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ABSTRACT

A brief review of the operation of vibratory gyroscopes
and the status of commercial micromachined gyroscopes is
presented in the introduction. Following the introduction,
an alternative design approach employing multiple,
coupled gyroscopes per angular axis is examined as a
method to improve performance and redundancy in
angular rate sensors. The results are from simulations and
exploré the effects of non-identical gyroscopes, variations
in the driving frequency, and coupling on synchronization
in the array. A novel operating approach is presented that
requires the array of gyroscopes to be synchronized in
phase and frequency to improve the detection of sense
axis displacement and to utilize one amplitude demodulator
for the entire array of gyroscopes.

1. INTRODUCTION

Vibratory gyroscopes are designed to determine the
angular rate of a rotating object. Typically, vibrating
gyroscopes can be modeled by the mass spring system
shown below in Figure 1.
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Figure 1. Model for vibratory gyroescope
A mass spring system used to model different types of vibratory
gyroscopes.

The operating principle for all vibrating gyroscopes is the
transfer of energy from one vibrating mode to another by
the Coriolis force. The Cortolis force is an inertial force
exerted on a moving body in a rotating reference frame.
The gyroscope in Figure 1 has two orthogonal excitation
modes with restoring coefficients k, and k, Damping
coefficents along each axis (C, and C,) are included in the
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model. The y-axis mode (drive) is excited by a reference
drive force and the zaxis mode (sense) is excited by the
Coriolis force (F.; ). Displacements along the sense or z
axis are proportional to the applied angular rate Q,, if the
motion of the drive axis is known. The following equations
model this system. :

my = —k},y - Cy_)';'+ Fdn've drive axis (la)

mi=-kz-C,2+F, senseaxis (lb)

F_ = Coriolis Force (1e)
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The critical design issues for micremachined vibratory
gyroscopes are detecting sense axis displacements that are
orders of magnitude less than the drive amplitude and
keeping the drive and sense motions uncoupled. The
excitation of the drive mode and displacements aleng the
sense axis are typically measured using electrostatic
sensors by applying a voltage or measuring changes in
capacitance. The amplitude of the drive axis motion is
typically limited to the 1-50 micron range depending on the
etching and manufacturing process used. Typical sense
axis displacements are orders of magnitude less than drive
axis displacements and require sensitive transducers to
measure the small displacements. This paper will focus on
low cost surface micromachined gyroscopes with
capacitive sense axis detection. While capacitive sensors
are not ideal for micromachined applications, they can be
implemented using standard silicon processing
techniques. Micromachined gyroscopes with bias drifts in
the 10-50°/h have been produced on a prototype basis [1].
An application for low cost gyroscopes with a 10°h bias
drift is in the automotive industry for roll sensors.
Gyroscopes with a bias drift less 0.1°h are suitable for
inertial navigation applications.

2, SIMULATION MODEL

The equations in (1} can be put into a more general form if
an amplitude modulated sinusoidal driving force is used to
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represent the Coriolis term in the sense axis equation (1b).
This simplification requires the drive axis displacement
follow a harmonic motion of the form cos(wy*t). This can
be accomplished by locking the drive axis displacement to
a harmonic reference signal in a gain control loop.
Equation (2) describes the sense axis motion (z-axis in
figure 1) of the gyroscope using a sinusoidally driven,
linearly damped, harmonic oscillator. Equation (3) casts
equation (2} in more general terms.

mz + Cz + kz = kQ(t) Asin (w,t) 2)
F42yz 4w, z=w QO Asin(w,t) 3)

In equation (3) v is C/2m, A is a constant that includes the
drive amplitude, wy is the harmonic drive frequency, w, is
the resonant frequency for the sense axis mode, and (1)
is the angular rotation rate about the x-axis. The general
solution for z(t) can be found and it describes the
displacement of the sense axis of the -gyroscope [2].
Equations @) and (5) follow from the general solution in
the underdamped case where ¥ < w, Zg, describe the
maximum amplitude of the sense vibration mode and @ is
the phase lag of the gyroscope with respect to the driving
frequency fvy) and the gyroscope sense axis resonant
frequency (w,).
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Q is equal to wy/(2y) and is called the “quality factor” of
the sense mode of the gyroscope. Plots of equations (4)
and (5) are shown in figure 2.
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Figure 2a. Plot of Zmax - This figure shows the sharpening of
the amplitude response as w, approaches w; and Q increases.

These equations describe the necessary conditions for the
gyroscopes in the array to synchronize and will be used
extensive to qualitatively describe the results of the
simulations.

Phase Lag as function Q

Phase Lag, ¢

Figure 2b. Plot of Phase Lag, ¢ - This figure shows that for
w, > w, the gyroscope will follow the drive frequency with
roughly zero phase lag. For w; = w,; the sense mode
follows the drive frequency by w2, For w,>w, the sense
mode follows by & The region of most phase mismatch
will be near w, and will be worse for high Q.

The main result is that for driving frequencies less that w,
the sense mode oscillates approximately in phase with the
drive frequency. The design of an array of non-identical
gyroscopes will involve choosing a Q for the sense axis
that minimizes phase mismatch in the array and maximizes
the amplitude response to the Coriolis driving force. The
simulation results presented in the next section explore
some of the tradeoffs in such a design.

3. SIMULATION RESULTS

For all of the simulations an array of one hundred
gyroscopes in a ten by ten two dimensional array was
used. The mean vaiues for the mass (m), linear restoring
force(kl), damping (C), drive resonance (w;), applied
angular rate (Q2), drive amplitude (A,) , and drive frequency
{wy) are shown in table 1.

mass 1g-9 kg

K1 1 N/meter
C 3.1623e-7 N s/meter
W, 31623 rad/sec

Q 0.175 rad/sec
Ay 10e-6 meters

Wy 31623 rad/sec

Table 1. Simulation Parameters with no variation
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The simuiations begin with an “ideal” case where the
gyroscopes are identical and each gyroscope is driven
exactly at wy, After the initial plots, these constraints are
removed and the mass is allowed to vary by le-9 £ 2.5e-11
kg with equal probability. This creates a variation in the
resonant frequency of the drive axis of 5033Hz * 62.5 Hz.
For many of the simulations we will look at drive
frequencies equal to the resonant frequency of the sense
axis and at 4966 and 5100 Hz. There drive frequencies lie
outside the maximum variation in the sense frequency
introduced by varying the mass of the gyroscope by 2.5%.
For ail the simulations a random set of initial conditions
was imposed on the system. The initial displacements of
the sense mode for each gyroscope was randomly
distributed between 0 £ 1.5e-8 meters with equal
probability. The value of 1.5e-8 is roughly the maximum
displacement for a single gyroscope with the parameters
given above. The sense mode was also given a randem
velocity between 0 * 1.0e4 meters/sec with equal
probability. Initial velocities larger than this tended to
destabilize the system. These random initial conditions
place the array in very disordered state. These simulations
do not reflect the expected performance of the gyroscopes.
They were completed to explore and optimize the
synchronization performance of the array of gyroscopes.
A constant external angular rate of 0.175 rad/sec was
applied in all simulations and the time for the summed
displacements of each gyro to reach a constant amplitude
was used to measure synchronization,

Figures 3a-c illustrate the initial conditions imposed on the
array and the summed output and amp litude demodulated
signal from the array of one hundred gyroscopes.
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Figure 3a-c, Time series and Demodulation. All figures use an
ideal model with identical gyroscopes and drive frequency at
resonance (5033Hz). 3(a) shows the effect of initial random
conditions from t=0 to t=100*Ts, where Ts = 20*5e-7 seconds.
3(b) shows the excellent phase and frequency synchronization from
t=1900*Ts to 2000*Ts. 3(c) shows the increasing amplitude of the
summed output from each gyroscope and the demodulated signal.
This demodulation method is only possible for phase and frequency
synchrenized gyroscopes.

Figure 4 shows the results from an “ideal” system with identical
gyroscopes and no variation in the drive frequency. A coupling
term is also introduced in the model which has the form
kappa*(Z neighbor-Z seir} Where Z is the sense mode displacement
and kappa is the coupling strength. A kappa of zero
corresponds to an uncoupled system. In the simulations, a
nearest neighbor coupling method was employed.  For
gyroscopes in the center of the array the coupling term includes
its four neighbors and the coupling for edge elements contains
fewer terms.

The coupling term could be implemented in gyroscopes through a
variable resistor connecting the sense axis capacitors of nearest
neighbors in the array. The coupling term was modeling in these
simulations to see if it improved the amplitude response or
decreased the synchronization time for the summed gyro output
signal, Figure 4 shows the effect of coupling on the ideal system
with identical gyroscopes. No improvement in the amplitude
response or synchronization time is achieved using coupling.
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Figure 4. Identical Gyroscopes driven at resonance (5033
Hz). This plot shows that coupling decreases the amplitude
response for an ideal array of gyroscopes.
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In figure 5 a more realistic system that includes a random 2.5%
variation in the mass is examined. This mass variation changes
the resonant frequency of the sense mode between 5033 * 62.5
Hz. This system now does not have a single resonant frequency
to exploit. Three values for the drive frequency were chosen to
examine the response of the array. They are at resonance, and
slightly above and below the frequencies variation possible for
the sense axis mode.
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Figure 5. Non-Identical Gyroscopes and Effect of Drive
Frequency.

The system driven at resomance now exhibits the worst
amplitude and synchronization performance. This is due to the
maximum slope change in the phase lag response near the mean
resonance frequency (sce figure 2). The best amplitude response
is for a driving frequency above resonance (5100 Hz). This can
be explained qualitatively by realizing that in this regime all the .
gyroscopes mest the condition w, < w, and thus have
approximately a 7 phase lag with respect to the drive frequency.
This phase lag does not affect the demodulation of the summed
output from the array since the gyroscopes are synchronized to
the drive frequency with a constant phase lag.

In figure 6 a similar plot to figure 5 is done with the coupling
strength kappa fixed at 0.1. This figure is very similar to the
uncoupled system.
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Figure 6.
Frequency

Non-Identical Gyroscopes and Effect of Drive

The effect of coupling does not change the general response of
the array of gyroscopes but it does decrease the maximum
amplitude of the summed gyroscope output signal. The final
case that will be considered is minor variations in the drive
frequency wy.
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Figure 7. Non-Identical Gyros with Variation in Drive

Frequeney

The top three lines in figure 7 use a drive frequency equal to the
mean resonance frequency of the array (5033Hz) and a variation
in the drive axis of only 0.5 rad/sec. The lower three figures use a
drive frequency greater than the mean sense resonant frequency
and the variation in the drive is 12.5 rad/sec. In both cases the
coupled system performs better than the uncoupled system.

4. SUMMARY

This paper demonstrates that for non-identical arrays of
gyroscopes with variations in the drive frequency coupling can
increase the synchronization in the array. The simulations and
solutions for a single damped, driven harmonic oscillator also
indicate that a driving frequency above the mean variation in
resonant mode frequencies produces the greatest synchronization
in the array. Future work will explore the effect of noise and a
time varying angular velocity. It will also be necessary to
characterize the response of the summed array displacement
output to the applied angular velocity.
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