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We investigate the response of a linear chain of diffusively coupled diode resonators under the
influence of thermal noise. We also examine the connection between spatiotemporal stochastic
resonance and the presence of kink—antikink pairs in the array. The interplay of nucleation rates and
kink speeds is briefly addressed. The experimental results are supplemented with simulations on a
coupled map lattice. We furthermore present analytical results for the synchronization and signal

processing properties of @* field theory and explore the effects of various forms of nonlinear
coupling. © 1998 American Institute of Physids$$1054-150(08)01503-1]

We extend the phenomenology of stochastic resonance
(SR) to arrays of coupled dynamic elements. For cor-
rectly chosen parameters, such as coupling and noise
strength, the signal-to-noise ratio(SNR) can be signifi-
cantly enhanced over that of a single element. We dem-
onstrate that for optimized parameters, the greatly im-
proved system response is characterized by a global
synchronization of the array and a locally maximized
SNR. Furthermore, the system switches phase not con-
currently but via the formation of energetically cheaper
kink —antikink pairs. We present experimental evidence
for all these phenomena and support the findings with
results from a coupled map lattice. We conclude with a
discussion of the signal processing properties of large ar-
rays of nonlinear dynamic elements, and the effects stem-
ming from different forms of coupling, and global/local
noise.

I. INTRODUCTION

Stochastic resonand&R) is a process in which noise—
acting on a nonlinear, multi-stable system, which is modu

lated by a weak external driving signal—enhances the per

odic character of the system respohdée output signal-to-
noise ratio(SNR) is maximized ENR,,,) by a nonzero

to occur in more general systems described by fipkttial
differentia) equations over a decade agdnly lately
though, stochastic resonance in spatially extended systems
experienced a surge in research activitiesin particular,
locally or globally coupling the single “stochastic resona-
tor” into larger arrays revealed promising results with re-
spect to signal processing abilities.

The termarray enhanced stochastic resonan@ESR)
was recently introduced by Lindnet al® to describe spa-
tiotemporal SR in a numerical model of coupled, bistable
oscillators. The response of one nonlinear, overdamped o0s-
cillator could be further optimized by coupling it locally and
linearly into a one-dimensional array of identical oscillators.
The SNR, 2, Was significantly improved for selected values
of the coupling strength and the number of elements in the
chain. It was also shown that optimizing the SNR of an in-
dividual oscillator coincided with the onset of maximal spa-
tiotemporal synchronization. Scaling laws for the optimum
noise intensities and coupling strengths resulting in a maxi-
mum SNR as a function of the number of oscillatoks,
were derived in Refs. 8, 9. Possible applications for AESR
are expected to be found in biological systems and within the

area of signal processing.

II. SPATIOTEMPORAL STOCHASTIC RESONANCE IN

value of the applied noise. While the notion of SR originatedA SYSTEM OF COUPLED DIODE RESONATORS
in the context of a single bistable system described by am. Array enhancement

ordinary (stochastit differential equation, it was also found

In this section we sum up the main results from Ref. 4.
We report experimental evidence of AESR in a chain of
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output of one of the middle resonator is observed to increase
with the number of elements, here up to 32, for open and
periodic boundary conditions. Both the optimal noise inten-

© 1998 American Institute of Physics
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FIG. 1. The circuit diagram sketching the individual noise sources and the
2nd drive added to the main drive. Each diode resonator consists of a diode
and an inductance in series. The diffusive coupling is realized via the cou- 15
pling resistorR¢ . The coupling strength is roughly proportional td=g/.
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o ) ] ] FIG. 2. SNR versus noise power for a single diode resonator. The sharp
sities as well as the optimal coupling strength grow with theincrease and the following decrease of the SNR are characteristic for sto-

length of the array. The array enhancement is most discerrghastic resonance.
ible when the resonators are fairly identical. In the experi-
mental setup, the variation in the depth of the potential wells
is slightly less than 10%. We experimentally verify that glo- We operate the secondary drive at roughly two thirds of
bal spatiotemporal synchronization coincides with optimizeadthe switching threshold amplitude, so that the resonators are
local performance of a single element in the chain. It is fur-confined to one phase if no noise is added. Note that this
thermore demonstrated that spatial correlation lengths argoes not correspond to the weak forcing limit and thus can-
maximized by a nonzero noise power analogous to the baiot be treated utilizing linear response theory. A different
havior of the SNR. noise source is used for each site, so that there is zero noise
For the bistable element we choose the diode resonatocprrelation between sites. The individual noise sources are
which follows the period doubling route to chadsThe glo-  far from identical; the standard deviation in the voltage fluc-
bal, sinusoidal drive serves as a bifurcation parameter. Byuations between sites is around 10%. The noise is obtained
operating in the stable period-2 regime, the tyamually by amplifying shot noise generated by a current through a pn
stablg phases give rise to the bistability. We break the phasgunction diode, and exhibits a flat power spectrum up to at
symmetry by adding a secondary drive signal of half theleast 100 kHz. The noise intensity is measured in two differ-
primary drive frequency, rendering one phase more stableent ways throughout this papénputintensity(‘“arb. units™)
Phase switching can be induced(if the frequency of the represents the average of the 32 noise sources and is equal to
added signal is not exactly half the drive frequency, giving2.3x 10~ 1° V2/Hz. Outputintensity is obtained by taking the
rise to a slow beat, anli) the amplitude of this resulting power spectrum and measured in dB. We process the current
low-frequency modulation signal is larger than some threshthrough the diode from the middle resonator of the array
old. If the amplitude of the modulation signal is chosen be-with a dynamic signal analyzer in order to compute the
low the switching threshold, additional noise is necessary t@ower spectra. The SNR is calculated by measuring the sig-
cause phase jumps. We note that similar symmetry breakingal power in dB at 100 Hz and subtracting the noise power in
driving signals were utilized in Refs. 11 to achieve phase anthe immediate vicinity of the signal. For accuracy the power
trajectory selection. A block diagram of the symmetrically spectrum is averaged over 20 measurements.
coupled diode resonators is given in Figure 1. The next-  Stochastic resonance in a single system is characterized
neighbor coupling is realized via the coupling resist@fs. by a maximum in the SNR curve as the noise power is var-
In previous work? the coupling strength was found to be ied. A typical SNR curve is presented in Figure 2, clearly
roughly proportional to R.. The frequencies of the main showing the so-called “fingerprint of stochastic resonance:”
drive and the second drive are fixed at 70 kHz and 35.1 kHza sharp rise to a maximum SNR at a finite noise intensity and
respectively, resulting in a beat frequency of 100 Hz. Thea subsequent slow decay of the SNR towards higher values
signals are virtually noise-free within the accuracy of instru-of noise.
ment precision, i.e., the amount of correlated noise in the In the case of an array there are two additional dimen-
array is negligible(For an interesting discussion on the in- sions in parameter space to be mapped out: the coupling
terplay between internal and external noise in ensembles dftrength as well as the number of elements. In Figure 3, the
nondynamical elements, see the last reference in Rgf. 6maximum SNR'’s for a fixed number of diode resonators
This situation is in close analogy to arrays of phase-lockedelever) and various coupling strengths are plotted versus
loops in antennae which can be assumed to be practicaliyput noise intensity. Note that smaller valuedRyf result in
free of correlated noise but are exposed to spatially uncorrestiffer coupling. The horizontal bars are a measure of the
lated fluctuations. width of the peaks of the SNR curves. For optimal coupling
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FIG. 3. Maximum SNR of the middle oscillatoN(= 11) for seven different FIG. 4. SNR curves for different numbers of resonators. From top to bot-

coupling strengths. With optimum coupling, in this c&&e=100 K}, the tom: N=32,11,3,1. The respective coupling strengths are optimized. The

SNR of eleven diode resonators surpassed the SNR of a single element % - ) . .
. . rves and their peaks are seen to broaden with an increasing number of
roughly 8 dB. The horizontal bars are a measure of the width of the peaksélements

(in this case 100 ) the peak was very broad. Two main
tendencies found in Ref. 3 are verified here. As the coupling ) )
becomes more and more rigii) SNRyay iS assumed at pling resistor for 32 oscillators was found to U?C
higher noise intensities, arfi) its value initially rises, peaks =15 K2, compared tdRc=120 K for 3 resonators. Since
at some intermediate coupling strength and abates. the coupling strength scales likeRY, this corresponds to an
Intuitively, (i) and (i) can be understood in the follow- €ight times stronger coupling.
ing way3° With stiffer coupling, the chain behaves more and ~ When applying the noise globally to five resonators, we
more like a rigid rod, so that a greater fraction of oscillatorsdo not find any coupling enhancement, which appears in
switch phase synchronously. But the intensity of the sum ofgreement with  conclusions from earlier numerical
N uncorrelated Gaussian noise sources scales\ikethus simulations®® The effect of different boundary conditions is
requiring higher noise intensities at the individual sites agnost notable for low numbers of oscillators. When employ-
eitherN or the coupling increase. As pointed out by Collins "9 periodic boundary conditions with just three oscillators,
etal.® not only does the SNR peak shift to higher noisethe maximum reachaple SNR. is slightly onver and. shifts
intensities but it also broadens significantly as the number ofowards weaker coupling. Intuitively, theffectivecoupling
elements is growing. In their numerical simulation, the indi-1S lower for open boundary conditions than for a closed loop,
vidual, uncoupledsites of the array were represented byexplammg the shift. Already for 7 .and 11 oscillators no de-
models of neurons, whose outputs were simply addedPendence on the boundary conditions could be detected.
Though conceptually different in design—excitable neurons
instead of bistable oscillators and no coupling
parameter—we found evidence for a widening of the peak as

i . . Coupling Resist kQ
well. Figure 4 displays the SNR curves for various array oupling Resistance (k<)

10000 1000 100 10 1
sizes, optimized over coupling. The tails of the graphs are 10 duris v e e e
seen to fall off notably less rapidly for a higher number of il A
resonators. We believe that this effect is also due to the fact Y . * 'N=32
that the noise sources are independent, hence partially can- 2 A N
celling each other, whereas the signal power is being added g ) ,,’* CRE N
coherently. 3 61 Nk "

In Figure 5 we plot the enhancement3NR,,,,, maxi- 2 Iz”/,”« " N’g
mized over noise, versus coupling strength for some of the S 4 o R N=T7"
different array sizes we examined. I & KA

The reference value of zero thus corresponds to the =N R PO
maximum SNR achieved with a single diode resonator. The @ ‘\{fi .
increase iINSNR,,,x occurs rather markedly for three sites 0 . AR
and appears to saturate with higher numbers. For very low as | 1'0 160 10'00 10000

well as for very high coupling, th&NR,,,x of the chain

Coupling Strength (dimensionless)

approaches the one for a single oscillator, as discussed
above. FIG. 5. Maximum SNR enhancement, maximized over noise, is plotted

: : gainst the coupling strength. To aid the eye the symbols are connected with
For 32 oscillators the maximum enhancement we Wer%otted lines. The different lines correspond to the different number of reso-

abl_e to achieve was _9-5 dB. Only 7 oscillators were sufficieNbators. For clarity the graph fai=5 was omitted. Larger arrays clearly
to increase the maximum SNR by 8 dB. The optimal cou-enhance the maximum SNR.
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80 coincides with optimal spatiotemporal synchronization of the

array>—>89
While the occupancy function is an efficient, combined
measure for spatial and temporal correlations, it hides some
of the more subtle, purely spatial features. In particular, we
L are interested in length scales, i.e., distributions of domain
ength . . .
\ / lengths, wheredomainsare contiguous blocks of in-phase
100 resonators. The three histograms in Figure 6 illustrate the
90 change in dominant length scales as the noise is varied. The
80 histograms have to be interpreted with caution: the frequen-
7 cies reflect the occurrence of domain lengths per temporal
snapshot which naturally favors shorter lengths. In order to
60 obtain the probability of detecting a particular length at a
PO . 50 random site the frequencies have to be rescaled with weights
10+ / . proportional to their respective domain lengths.
! AN Low but finite noise power overcomes the coupling only
’ . sporadically, giving rise to a dominant peak at bin 32 and
0 -— . . , , , rather low frequencies for smaller domain lengtlise far
-60 -50 -40 -30 left histogram. For intermediate/optimum noise strength the
Output Noise Power (dB) peak at bin 32 is even more pronounced, and shorter domain
FIG. 6. OccupancyA) and SNR(O) for 32 resonators versus noise power Iength_s are almost entirely absen,t' The prObabllltY to de,teCt a
(periodic boundary conditiopsNote that for this plot the intrawell motion domain length=M at a random site at a random time might
was discarded, so that the SNR truly approaches zero for low noise powegerve as a convenient quantifying measure for spatial corre-
The coupling resistor was chosen to be optini@gd=15 k(2. The histo- lation. For M =32, this probability increases from 60% to

grams display the distribution of domain length scales, at noise powers 1.3%~, : :
1.6, and 2.3(from left to righ§. The arrows indicate the corresponding %OA) from the far left hlstogram to the middle one.

values of occupancy/SNR. Each histogram is comprised of about 200 data 1 hiS counterintuitive behavior—adding more noise actu-
points. ally increases spatial correlation—could be viewed as the

spatial analogy to “temporal” stochastic resonance in a
single system where a temporal correlation function is maxi-
B. Global vs local dynamics mized by a finite noise power. High noise intensity leads to

The emphasis so far has been on the performance of 'Y short spatial correlations, which is confirmed in the far

single element in the array. In order to obtain a more globalight histogram.

perspective connecting the local dynamics to the behavior of

the entire array, we adopt the notion of hecupancyfunc- ;. \Nk_ANTIKINK NUCLEATION IN A ¢* MODEL

tion, which was introduced in Ref. 3. It constitutes a measure

of the average spatiotemporal synchrony and is defined as It was shown by Marchesoni and coworketlsat in the

the percent of resonators assuming the preferred phase at tmit of strong coupling the discrete system of coupled Duf-

extremes of the modulation signal. Thextremesof the  fing oscillators from Ref. 3 approaches the dynamics of the

modulation signal are understood as the two unique phases* model. Scaling laws were derived in a subsequent Saper

of the beat frequency which result in maximum asymmetrywhich confirmed the analogy between the discrete setup and

in the size of the two basins of attractions. The respectivéhe continuousp” field theory. The phenomenon of AESR

values were inferred experimentally by choosing the ampli-and its associated kink—antikink dynamics does not depend

tude of the secondary drive to lie barely above the thresholdn the exact form of the local bistable potential. Hence, for

and measuring the phase of the beat at the instant of a phas&ong coupling we expect to observe very similar phenom-

jump. enology in the experimental setup. The present section sum-
By definition, an occupancy value of 100% correspondanarizes the results from Refs. 5, 13 and is intended as a

to perfect spatialand temporal synchronization, whereas tutorial overview of kink nucleation theory. In Sec. IV we

50% occupancy can be caused by either complete spatiptesent qualitative evidence for the validity of the kink—

disorder(high noise poweror by a spatially uniform chain antikink picture in the experiment. It serves as the connect-

of resonators confined to one pha$ew noise limiy. We  ing thread between the abstratt model and the system of

measure the occupancy function using a device that periodcoupled nonidentical diode resonators.

cally samples the state of all resonators simultaneously and In the continuum limit, a* model is described by the

then provides a sequential analog output of the states. Thuifferential equation

output contains information on correlation lengths, and its 2 2 1 _

time average is a measure of the occupancy function. Pu= Coduxt 0oV )=~ adt LD FF, @
Figure 6 clearly demonstrates the strong correlation bewhereV[ ¢]=(1/8)(¢>— 1)? and {(x,t) denotes a Gaussian

tween the locally measured SNR and the globally determinedoise source with spatiotemporal correlation

occupancy. The graphs almost mirror each other and peak &t (x,t)(x’,t"))=2akTs(x—x")8(t—t"). The ¢* theory

the same noise power, thus verifying that maximum SNRs known to bear both extendeghonon$ and localized
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(soliton solutions. Localized solutions can be convenientlyHere the center of the nucleus has been set at the origin
reproduced as a linear superposition of uniformly movingwithout loss of generality. Its components experience two
kinks, ¢, , and antikinks,¢_ , with* contrasting forces: an attractive force due to the vicinity of
the nucleating partner and a repulsive force due to the exter-
nal biasF. In view of Eq. (6), the potential function corre-
sponding to the internal force®s

1 X— X (1)
d(x,t)y=tanhh £—

2d \J1-3%2 (t)/c2

+ o
provided that the separation between their centers of massN(x):f H[ ¢n(X,X)Jdx
X. is very large compared with their size=cy/wg (dilute -
gas approximation The equilibrium kink(antikink) density

)

in the symmetric E=0) ¢* model at finite temperature is =6E[ (—2/3+3K—2K?)+(X/d)(1-3K?*-2K?)],
knownl4 @)
/ /
n.=n :(i)lzf (E)lz exp(— Eo/kT) ) with K=tanh }(X/d) and forX>d may be further approxi-
=0 2] d kT ol mated to

whereEy= (2/3)wCy is the rest energy anMIc,:EO/_cS is_ VN(X)=2Eq[1—6 exg —2X/d)]. (8)

the mass ofp.. . It follows that the dilute gas approximation

holds for ngl>d, that is at low temperatureg T<E,. In  The potential of the external forde can be determined by

such a regime(X2)=KkT/My<c2, so that the relativistic integrating the drift term of Eq(4), that is +2FX. The

boost factor in Eq(2) may be approximated to unity. critical nucleus configuratiogpy(x,R) is attained for a rela-
The perturbation forceg(x,t) andF cause a rigid trans- tive_ kink—antikink distance, R(F), such_that the two com-

lation of the kink(antikink) against whiché. is in neutral  Peting forces compensate each other, i.e., for

equilibrium. In o_ther words, the shape &f. is not affect.ed _ 2R(F)=—d In(Fd/12E,), 9)

by the perturbation, whereas its center of mass coordinate is

replaced by a random variablk. (t). In the overdamped and decays through one unstable mode, only—the collective

limit, a>wq, a single kink(antikink) undergoes a driven variableX(t)—with negative eigenvalue

Brownian motion described by the Langevin equatidt

. Ao =V}(R)/Mo=—4F/Mqd. (10)
X+=F2F/aMy+ (1), (4) ) . .
) ) Moreover, its energAEy(F) is obtainable through Ed8)

where 75(t) is a Gaussian, zero-mean valued random forceysar replacingk with R(F).
with correlation function( 7(t) 7(0)) =2(kT/aMo) &(t): the In the Gaussian approximation, the nucleation rate for
static forcing termF pulls ¢-. in opposite directions with 1o biasedoverdamped¢? chain is given by Langer's
average speed formulal315

U.=(X.)=TF2F/aMy. (5 INY] Zy

The elementary mechanism which allowsp4 chain to rz:ﬁ Zo exp(—AEN/KT), 1D

switch between its vacuum configuratiogs= =1 is the
nucleation of kinkantikink pairs Thermal fluctuations are WhereZ, andZy denote the(subtractel partition function
expected to trigger the process by activating a criticaffor the vacuum and the critical nucleus field configuration,
nucleus, the size of which may be shown to increase witde€spectively. The entropic factaty/Z, accounts for both
decreasingF. Provided that the size of the critical nucleus is the phonon modes(with continuum spectrum which
small enough to ignore many-body efféétdue to the equi- dress” ¢o(x) and ¢y, and the two internal modes afy
librium kink—antikink gas with density3), we can describe With discrete(nearly degenerateigenvalues\y =v3wy/2.'
the nucleation process as a local two-body proctesrel- A standard calculation yields the following analytical expres-
evant saddle-point configuration is represented by such &ON forl,:°
critical nucleus and not by the unstable homogeneous solu- 9 w2
tion ¢=0! This introduces a spatial correlation length in the [,=— -0
chain switching mechanism. 7 ad

.T.he nupleation ratd’, defingd as.the number of kink— The validity of Eq.(12) is restricted by the condition that
antikink pairs nucleated per unit of time and length, can bEkT/EO<F/w(2,<1 (strong bias regime The inequality F

calculated analytically in the Iimits' of strong damping, <w§ corresponds to requiring that the tiltag® potential
>wg, and low temperaturkT<E,, introduced above. For w2V[ $]—F ¢ retains its bistable nature and, more impor-
simplicity, we assume that the chain sits initially in the stabletantly that the relevant offset ab.. in Eq. (2) may be ig-
homogeneous statﬁo_(_x)z _1. gnd that the forcing terf nored. As a matter of fact, that would amount to rescaling
is constant and positive definite. A large nuclepig(x,X)

with length 2X>d is well represented by the linear superpo- @o” > @o V.l_ F/.wo or, .egu|v1a7|ently, for the stationary speed
" ; S _ . of the driven kink(antikink),
sition of a kink and an antikink centeredatX, respectively,

AN X) =y (X+X,00+ b (x—X,0)+ 1. (6) u.—u. /\1-F/w}. (13

F 1/2 AEN 1/2
E) ( kT) '

(12
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Note that this “concavity” in the kink speed is observed
experimentally(see Sec. IV A and Fig.)%nd in the model
(see section V C and Fig. 14

The inequality=d>kT is implicit in Langer’s derivation
of formula (11). In Ref. 13 the two-body model has been
solved without having recourse to the Gaussian approxima-
tion: the corrected formula for the nucleation rate in the weak
bias regimekTny(T)<F<kT/d reads as

I (F)=T5(F)x(F), (14
with

| Fd
k(F)=2m T (15

andAEy(F)~2E,. This second expression fbris compat-
ible with the linear response theory requiremé&hend can
be cast in a more suggestive form, namely,

I'1=2(2ng(T))?|us]. (16) site #

Equation(16) is the kinetic model prediction for the nucle- FIG. 7. Each graph contains three snapshots of the 32-resonator chain dem-
onstrating the formation and spreading of a kink—antikink pair for three

ation rate in an overdampeﬂ“ theory.13 different coupling strengths and open boundary conditions. The curves are
The reason for switching froh, to I'; lends itself to a  staggered with time evolving downwards. The brackets indicate the ex-

direct experimental verificatiofsee Fig. 15, beloy In the tf??es Ofnt:e F;frﬁ::et-h_Tlf;eolsinléﬁnt:i':im(i:\/;lthslgge l;;%)erlit% :/23: dlriimie:ica"y

Gaussian approximation the nucleation mechanism is coﬁg(tng‘éF_’g k%? an% optimal Couglingfor bRo= 15 ). Tg’he SNE,nga

trolled essentially by thermal activation; the decay time Ofand c are 2.2 dB below the one achieved with the configuration b.

the critical nucleus is taken to be finite and negligible with

respect to the activation time. In the weak bias regime, how-

ever, the parabolic approximatidf0) is not accurat® and In order to see how kink—antikink pairs are nucleated in

the nucleus decay is better described as a steady downh#l noisy environment, Figure 8 shows staggered snapshots of

sliding motion with speedu.|; the nucleation process is the thermal nucleation and subsequent spreading of a kink—

then deemed accomplished only after the nucleating partnestikink pair.

have covered a distance of the order of the mean free path In the hope of gaining more insight into the dynamics of

no(T) . Finally, for F<kTny(T) many-body effects be- the hopping process of the array for various coupling and

come dominant and the critical nucleus picture is of no'fise. noise strengths we examine two significant time scales in
more detail:(i) the speed of each component of a nucleating
pair as a function of forcing amplitudes aril) the kink

IV. NUCLEATION OF KINK—-ANTIKINK PAIRS IN THE nucleation rates as a function of temperattiréoth for a

EXPERIMENT range of coupling strengths. For the remainder of this sec-

While not intended to serve as a rigid experimental veri-tion’ the number of resonators is fixed to 32, and periodic
boundary conditions are employed.

fication of the universality of the findings for thg* model
derived in the previous section, Figure 7 provides strong sup-
porting evidence for the above summarized arguments. In
order to demonstrate the various widths of nuclei for differ-
ent coupling strengths, we operate in a noise free, sub-
threshold drive region and induce a kink—antikink pair at site
16 in the following way. The amplitude of the 2nd drive at
site 16 was increased until phase switching occurred. Note
that we are not able to make any statements about the size of
the critical nucleus since this is a forced nucleation. For
loose coupling the transitions are very sharp, and the width

2l
o J u. )
f th leus i to be only a fraction of the latti W"“
of the nucleus is seen to be only a fraction of the lattice o w
length (Fig. 7a. If the coupling is chosen to be rather tight rm/’w
N e —d= N
==

Phase

(Fig. 70, the kink—antikink pair extends well beyond the ro-.J
system boundaries. The shape of the nucleus in the case of :
optimum coupling is illustrated in the graph b. The width of
the nucleus, defined as the distance between the centers of

the kink/antikink. is of the order of half the chain. The cor- FIG. 8. Shown are staggered snapshots of the 32-resonator chain demon-
’ ’ strating the thermal formation and subsequent spreading of a kink—antikink

responding SNR is significantly higher than in the cases of Bair. The curves are separated by eight drive cycles with time evolving
and c. upwards. The employed coupling resistor is 8.k
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FIG. 10. Half-time(as defined in the textas a function of inverse noise
FIG. 9. Kink speed as a function of force for various coupling strengths.intensity, for various coupling strengths: From left to rigRg=6.8 k2, 15
From top to bottomRc=6.8 K, 15 K, 27 k2, 68 K, 100 K), 180 k). kQ, 27 kK, 68 k), 100 K2, 180 K. Two regions can be separated in which
(Note that the coupling strength iisverselyproportional to the value of the the curves are approximately linear, each with a different slope. Note that
coupling resistor.The force is a measure of the asymmetry of the basin ofthe coupling strength isverselyproportional to the value of the coupling
attraction of the two phases. The curves are well fit by a straight lines. FofesIStor.
low coupling strength and low forcing, kinks can get trapped due to dis-
creteness effects and inhomogeneities.

experiment we are not able to get an accurate measurement

of Thuc; instead we can measure average decay times, i.e.,

In the continuum case of the overdampgtitheory, the  the time it takes for the whole chain to decay from its meta-
motion of a kink was shown to be a driven Brownian walk, stable phase into the stable phase. Assuming that the decay-
where the deterministic part of the velocity depends linearlytime after a kink—antikink pair was createghis time de-
on the forcing amplitude; see E(p) in Sec. IIl. It is quite  Pends inversely on the kink speed small compared to the
educational to compare this theory with the case of coupleime it takes to nucleate the first pair, a good estimate for
(i.e., discretg nonidentical elements. Figure 9 shows theTnuc Will be half the averagétotal) decay time. Of course,
measured kink velocities in the experimental setipa  this approximation breaks down for high noise intensities
noise free environmenfor a broad range of Coup"ng resis- since the nucleation rate then becomes Comparable to the
tors. A linear relationship can clearly be verified over ankink speed. We remark that the total decay time is the mul-
intermediate range of force values. For low values of théidil’ﬂGl’lSiOﬂ&' equivalent of the inverse Kramers rate for a
coupling strength both discreteness effects and inhomogeng&ingle system. Figure 10 shows this half-time as a function of
ities slow down the kink propagation. The inhomogeneitiegnverse temperaturé.A step force of 2 unitgsee Figure D
arise because the elements are not identical and the noieapplied to the chain of diode resonators initially being in
intensity has a non-negligible variation from site to site.the energetically less favorable phase. We then measure the
Thus, the local “barriers,” i.e., the energies needed to inducéverage decay rates into the stable phase and plaatiee-

a transition vary significantly, which leads to kink trapping. 299 time it takes forhalf the elements to switch phase. The
Discreteness effects also affect kink speeds for low enouggurves are roughly piecewise linear on the logarithmic scale,
forcing, even if all elements are identical. The mode|_indicating an exponential law in each of the two sections.
which is developed later in this article—shows a finite cutoff

for the veIoci'Fy at low coupling s_trengths due to it_s discretey, gpATIOTEMPORAL STOCHASTIC RESONANCE IN
nature; see Figure 14. Also, nonlinear effects for higher forca sysSTEM OF COUPLED LOGISTIC MAPS

ing can be recognized both in Figure 9 as well as later in the ) ) o

model. A nonlinear rescaling of the kink speed is predicted® Stochastic resonance in the logistic map

by the ¢* theory; see Eq(13). For forcing values higher As a low-dimensional dynamical system exhibiting the
than ~2.6 inhomogeneities lead to multiple kink nucleation period doubling route to chaos, the diode resonator is known
corrupting the measurements. The curves in Figure 9 corrgo be modeled fairly well by a one-dimensional quadratic
sponding to the extreme coupling values, 6@ &nd 180 mapl® Well established in previous work we choose a
kQ), should be evaluated with caution: For very weak cou-chain of (symmetrically coupled logistic maps as a compu-
pling (18%) the kink would move only for relatively strong tationally efficient representation of the experimental setup:
forcing, while for strong coupling (6k9 it is impossible to
nucleate a kink at all in case of low forcing.

As one would expect, the time it takes for a kink—
antikink pair to travel around the loop is much shorter than
one drive period(In this case for the beat frequency of 100 [i e[1,N], n=time, f(x,r)=rx(1—x), xe(0,1)]. The ad-
Hz and the forcing amplitude used in the SNR measuremenigsistable parametdd alters the intensity of the normally dis-
as described aboveHow does this time relate to the average tributed deviate/' which has zero mean and unit variafite
time it takes to nucleate the first critical nucleljg,.? Inthe  and is independent from site to site.

Xn+1= (1= €)F(X;,,r)

+ i f(x L)+ (X )]+ DY (17)
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1.0 TR E EE E TR The modulation can eliminate two of the thrgeeriod-

_ L one is still presentfixed points as can be seen as follows:
0.8 = Xnt2=Xn & F(F(X,r1),r)=xe1=r15-(1=X)-[1=ry-X

| | (1-x)]ex3+a;-x?+a, x+az=0, with a,=—-2, a,
06 B =(1+ry)/ry, and a3=(1—r1r2)/r2ri. This third order

polynomial has three real distinct roots if the discriminant

| I D=Q%+R?<0, where Q=(3a,—a3)/9, and R=(9a;a,
049 B —27a3—2af)/54. Therefore, the threshold f@ér causing a

7 r phase jump can be found by solving for the root of the dis-
0.2+ ~ criminant,D=D(rq,r,)=D(4dr), with ry ,=ro* dr.

. - Regarding the(unstablé period-one fixed point as the
00fF——T— 77— boundary between the two different basins of attraction, the

00 02 04 06 08 1.0 mechanism of stochastic resonance in this particular case can

be viewed in the context of a cris?s.
The actual signal, i.e., the equivalent of the beat fre-
quency in the experiment, is superimposed by makdng

We remark that stochastic resonance in maps andtime’-dependent: or=dr,=drq sin(2rwn), with fre-
coupled map lattices of a different nature is treated in detaifluencyw<1. A plot of the SNR vs noise for a single logistic
in Ref. 20. In analogy to the experiment, the nonlinearity ~ Map displays the typical SR-behavior: a sharp rise to a maxi-
selected to lie within the stable period-2 regime of the logis-mum and a slow decay for greater noise intensities.
tic map, giving rise to a bistability via the two symmetric
phases. Since the value ftorresponds to the amplitude of B. AESR in the coupled maps
the main drive of the diode resonator, the “modulation sig-
nal” is added to this parameter in the following way.

The phase symmetry is broken by a period-2 modulatio
of r (equivalent to the 35 kHz component of the 2nd dyive

FIG. 11. The 2nd return map with no modulatiafr,=0 (r=3.2).

The different nature of the coupling in the coupled map
lattice and the coupled oscillators results in significant dif-
Rerences in the limit of low and high coupling. A measure of
the qualitatively different coupling is the maximum obtain-
rot+éor, for n even, able kink width, i.e., the number of sites which constitute the
ro—or, for n odd, domain boundary. While for the time-continuous coupled el-

enlarging the size of the basin of attraction of one of the twoements the kink width at least in principle grows proportion-
fixed points ofF (x.r1.r2)=F(f(x.r1).r,) on the expense of ally to the coupling strength, the kink width in the coupled

. ] . >~ 7" map lattice cannot be pushed beyond eight to nine sites. The
the other. Again, this method of.symmetry breakmglls "Mimited long range correlations in a coupled map lattice ef-
close conceptual analogy to previous work by Yatgl:

: d . . fi h i hi I NR. Si he local kink
Figures 11-12 serve to illustrate the change in the sizes qutS the maximum achievable S Since the local kin

: . ) ucleation cannot involve more than sixteen to eighteen
the basins of attractions. Figure 11 shows the 2nd return MaPes the SNR is expected to saturate for more than 32—34

|°ft.the .IOQ'SU? ’Q?F’ \I':V.'th nolrgodula}:!on._A moderate rT]{Odt_"maps. Figure 13 verifies this trend and also displays two
ation 1s applied In Figure resuling in an asymmetry in g, in,s differences to the case of the coupled Duffing

the basin of attraction size. The phase slip occurs wireis oscillatorg and the coupled diode resonatéré) The SNR

sufficiently big so that one of the basins entirely disappearsIS significantly enhanced already for very weak coupling

strengths é€=0.002-0.01); and(ii) after reaching a plateau

r=r,=

10 Ll P R which depends on the number of coupled maps, the maxi-
l | mum SNR does not decrease significantly over the available
05 A | range of coupling values. These two issues will be subject to
2N N further investigation. The array enhancement is verified by
1 / i the coupled map simulations; the maximum achievable SNR
067 B for a single logistic map is around 18 dB, the SNR for 32
T r optimally coupled maps is between 25 and 26 dB. The re-
0.4 - sulting enhancement of 7.5 dB is significant.
0.2+ - C. Decay rates and speeds for the coupled maps
| i In order to understand the phase switching process in the
00 UL coupled map lattice, as before, we study the dynamic prop-

00 0z 04 06 08 10 erties of kinks in this section. The kink speed as a function of

FIG. 12. The 2nd return map with modulatior,=0.04, illustrating how  bias for different coupling values is shown in Figure 14.
the basin of one fixed point grows at the expense of the otheB(2). The  Several key observations can be gathered from this graph.

phase determines which return map is obtained; first adding, then subtra : : : : :
ing or on the 2nd iteration enlarges the basin of the smaller fixed valugEaCh curve dlsplays a linear region which is expected from

(solid curve, while the bigger fixed value appears more stable in the otherth_eory; see Eg(4). The ConcaVit)_/ behavior f_or larger for(?es
phase(dashed ling (biag qualitatively agrees well with the nonlinear corrections
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FIG. 13. The maximized SNR vs coupling for different numbers of coupledF!G- 15. Average timei# of iterations it takes to nucleate the 1st kink
logistic maps. From top to bottonN=32,15,9,5,3. The parameter3.2 (circles, then to fully decay(diamond$, the sum(squaresas well as the

was chosen such that each individual map is in a stable period two. Thgorresponding SNRtriangles, dashed lineversus applied noise._The mini-
signal amplitude is sub-thresholit = 0.04. mum SNR results from the crossover of the two time-scales, i.e., when the

nucleation time is equal to the subsequent full decay.

obtained in thep* theory discussed in Sec. Ill; see also Eq. .. . )
(13). Only curves corresponding to coupling values Iargel‘d'St'nCt components corresponding to the two processes de-
scribed above. The time it takes to nucleate the first kink

than 0.3 go through the origin. For low coupling the discreted & ially with th S . A
nature of the system requires a nonzero force for kink prop decrease® exponentially with the noise intensiy. As can

gation. This finite speed cutoff at low forces increases with?€ S€€N in Figure 15, the subsequent decay time is a slowly
decreasing coupling as can be seen in Figure 14 decreasing function of the noise, which implies that (e
Unlike in the experiment, it is straightforward in the ti)kinks propagate faster for increasing noise. This effect is

coupled map lattice to separate the kink—antikink pair nucleg'sgll,’ssgd ngd ut:hzeg 'g more ?}eta'l in-a fo;]thco.rl‘lmng
ation from the subsequent spreading through the entire arrag.u ication:* We E}Ot the SNR %n the same grfaph tos' us-
We expect the nucleation process to have an exponenti jate a Surlousl P enomenlon.ht € m|n|r|numl 0 ht € hNR IS
dependency on the noise strength while the subsequent decay>UM€ at almost exacj[y t € noise level where t © tV,VO
should be regarded as an almost deterministic process. wine-scales cross. The universality of this coincidence is still
measured the average number of iterations it takes to nuclé?‘—tolp'C o:;ongomg reslearch. h . |
ateonepair under an applied bias as well as the average time '" Ord€r to stay close o the experiment we also mea-
it takes to fully decay into the stable phaasierwards Fig- sure_d the half t!me for the coupled maps. Figure .16 s the
ure 15 shows these two quantities as a function of nois§duivalent of Figure 10 _for the_ coupled map !atnce. The
intensityD along with the sum and the corresponding SNR_measur_ement proced_ure is |Qentlca_l to the experiment: A step
The sum will be the most accessible variable to be measuref(fPrce (k,)""f‘,s Icl,f _bo"01 IS ar[])phled atf time Efro tho the COUplEd
in experiments. It can be considered as the equivalent of thg'aps Initially being in t € 1ess lavorable phase. We then
average waiting time for one uncoupled system. With theneasure the number of iterations it takes for half the maps to

added spatial dimension it can be nicely dissected into twgecay into the stable phase.
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FIG. 14. The same as Fig. 9 for the coupled map lattice. Shown are the kinklG. 16. The same as Figure 10 for the coupled map lattice. The coupling
speeds for different values of the coupling param@gdseling the curvesas values(increasing upwardsare e=0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4
a function of applied bias/force. (r=3.2, 6r=0.01).
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V1. SIGNAL PROCESSING USING COUPLED in Ref. 3. For this system, the dynamics of i element
NONLINEAR DYNAMIC ELEMENTS can be cast in the form

In Sec. Il, we discussed the enhancement of the response 3 )
(quantified via an output SNRf a single stochastic resona-  Xi =KX —k'x;"+ A sin wt+N;(t) + Ci(e),
tor, when it is coupled into an array. We have seen how

significant enhancements in the output SNR are possible Ci(€)=€(Xe=x1), 1=1,

within well-defined regimes of the noise-coupling parameter =e(Xj11— 2%+ Xi41), 1<i<N,

space'® However, in practical scenarios, the SNR is often

not the best measure of performance. Indeed, a nonlinear =€(Xi—1—X), i=N, (18

signal processor may output a signal which has infinite SNR
but is useless because it has no correlation with the inpu‘r;[1
signal. In practice, therefore, a signal detection system’s per- x N

formance is frequently characterized by measuring its prob-  C;x,= — EI+ > J tanhx;+A sin ot+N(t). (19
ability of detection and probability of a false alarm. The Po=t

probability of detection is the probability that a “decision
circuit” will report that a signal is present when in fact a

signal is present. The probability of a false alarm is the pmb'networks, x; denotes thei™ neuron’s activation function

af)llltyntth\;a\llthtrr]‘ei:?m?on ;:lrncullti er1” trepr)ort ::at[)ats'%n?: IS r(membrane potentiglandC;, R; denote the neuronal input
prese € act a signal 1s not present. Letection pe capacitance and trans-membrane resistance, with the cou-
formance can be summarized by receiver operating chara

L : . . f)'ling coefficientgsynaptic efficaciesusually determined via
terlstlcst(hROCQt,) V\g.lll.(t:h ‘Te ]E)I?ts 0]; probability of detection a “learning rule.” Here, we shall choose the couplings to
vers_::ls _”e E)rot abiiity ofada s¢€ atalrm. dd trate S maximize the SNR of the response of oscillaterl. This

o llustrate some fundamentais and cemonstrate System differs from the previously considered syst@s) in
based enhancements in signal processing wigiori non-

X X 2 . that(a) the noise is externdl.e., all elements are driven by
linear detectors, we consider a very basic signal processin

task: detecting a sine wave of known frequency and phase Ign identical noise time seriggb) the coupling is nonlinear,
j : : . h ling is global, h li func-
the presence of Gaussian white noise. One can ptdhat H:)t e coupling is global, ant) a hyperbolic tangent func

. . : ., tjon is used for the nonlinearity. However, the two systems
the bes_t detector for this class .Of. 3'9”?" C.OnS'St.S of an ide hare a wide range of qualitatively similar SR phenomena. In
linear fllter'followgd by a “decision circuit” which COM- " 1oth cases, we s&# a significant enhancement in signal
pares the linear filter's output to a threshold. If the f|.It§r’s detection for the array compared to the single element. Sig-
output ex_ceeds the threshold, then the system’s decision Ial detection is, however, the best when one computes the
that the sine wave was present. If we already know what th OCs directly for the input signal, so why bother with SR?
best detector is, why continue? In practice, there is no suc '

thing as an ideal linear filter. All filters add some noise andtrhe problem is to acquire the input signal perfectly. If the

deviate f foct | v O K relates t . ansducer which picks up the input signal has a perfectly
eviale from pertect linearity. Lur work retates o using cou-yqq 5, response, then it is ideal for our task of detecting a sine
pling to enhance the performance of physically realizabl

. ) ) . Svave in Gaussian white noise. If the transducer has a non-
(i.e., nonideal signal processing elements.

o L . linear (assumed bistable hgreesponse, then coupling it into
Our decision circuit opera.\tes by comput.mg thg POWETan array can improve signal detection. Indeed, there exist
spectrum of the Wayeform of intereft.g., the input signal, special cases for which the nonlinearitiéise tanhx; terms in
the response of a single isolated element, or the response 9)] identically cancel, giving the system a perfectly linear
an element coupled thN— 1 other elemenjsand comparing

. . response to its input. For example, this occurs for a pair of

the power in a narrow frequency band of widtly centered . : . _ _ _ _

¢ f N threshold. If th ds th identical oscillators =2, C;=C,, R;=R,, J;;=J,)
?h rehqlfgnfr)]/w do a thres O't. ledeV\tlﬁrtexcge SI € with couplingsJ,,=J,,=J;; and identical initial conditions.

res ci A | € tr(]aus:])nldc:rcu& ionﬁ. uh es bab'lat sgns twas It is worth noting that the ROC curves can be predicted
{:_)resend. th ow b rc;_sllto f e? IS 0 I '9 pr(rn].la ”hy ﬁ the eﬁ’directly from the output SNR. Since we do our signal detec-
I(I)dn Iand ,? ptrr? a: ity ; SI'Ste afardm,twt] €a '3 th r?s “tion by comparing the power in the signal bin of the FFT to
old 1eads fo the jow probabiiity of detection an € oWy threshold, and since one bin of the FFT covers a very

probability of a false alarm. To produce a ROC, we repeat, arrow range of frequencies, the noise spectrum across the

edly measure the power in the narrow frequency band anﬁin and in the vicinity of the bin looks approximately con-

reior(ljl the valuetz. _\I{\r/]e do this t?to t.h with and Wghg_llj_tt th; St'gkr;astant. Therefore we can approximately model the output of
actually present. 1hus, we obtain power probability distribu-~, . o pjinear arraywhich supplies the input to the optimal

:!otr)s fotrhthe St;ggfcll.lt/ n?dsugnatl_ ca}ses". Usm_g thetshe Str?-l d detectoy as a sine wave in white noise with a SNR equal to
IStics, the probability of detection for any given threshold, array’s output SNRR. For this input, the optimal detec-

pow‘(‘ar. valu,(,e may be comp_uted by measuring th area und';'(‘(Sr’s probability of detectiorifor a set false alarm probability
the “signal” curve to the right of that value. Similarly, the . 24

probability of a false alarm equals the area under the “no ™

signal” curve to thezglght of the threshold value. Po=Q(V2R,\V—=21n Prp), (20)
In recent work®?® we have computed the ROC curves

for the linearly coupledN-element Duffing array introduced where

s well as for a somewhat different systém:

Systems of the forng19) have been used as continuum ana-
logs of connectionist type electronic neural networks. In such
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> (21 ments of the array is correlated or uncorrelated. If the noise
comes from sources internal to the system, then using many
elements which are coupled and/or have summed outputs

tion of the first kind and order zero. This approximating Will €nhance output SNR, compared to using only one ele-

model gives highly accurate results except in a transitionai"€Nt: In the case of summed outputs, and to some extent in
noise range(at low noise strengthwhere both intra- and the case of cogpllng, this is becaL_Jse signal components add
interwell motion contribute significantly to the output SNR. coherently, while uncorrelated noise components add inco-

The response is most strongly nonlinear in this regime. Foperently. In the external-noise case, one does not have this
example, in this regime turning on the sine wave signéth effect to exploit, but, somewhat surprisingly, coupling can

input noise strength held constanauses a large increase in Still énhance output SNRThe externalfinternal noise dis-
both signaland noise output power. In this case, calculationstinction also affects how we can measure SNR enhancement.

based on just the final value of the output SN#Rth the sine If we are considering the external noise situation, then there
wave turned ohunderestimate the signal detection perfor-IS @ Well-defined input signal plus noise. We can compare the

mance.

o 22+ a2 ment since it determines whether the noise at different ele-
Q(a,B)EJ zexp — lo(az)dz
B

is Marcum’sQ function, andl is the modified Bessel func-

input and output SNR to determine if the system provides
Before concluding, a few words about the output vs in-2ny gain in SNR. We can also look at output SNR as a

put SNR are in order. The optimal detector of a known signafUnction of N, the number of elements in our array. For

in Gaussian white noise is the correlation receiver ornternal noise, the input SNR is infinite, because the signal

matched filter, which is a linear filter whose output is com-COMes into the system with no noise added to it. However,

pared to a threshold. The optimal estimator of a linearlyV® ¢an still look at output SNR enhancement as a function

modulated signal in Gaussian white noise is also a lineaPf N-

filter. This suggests why the output of a stochastic resonator

circuit driven by Gaussian white noise has an output SN

bounded by the SNR obtained by a linear filter, or, equival?/”' CONCLUSION

lently, the input SNR. Indeed, for a small signal and noise it ~ Stochastic Resonance, when carefully invoked, can en-
is easy to prove that the output SNR of any nonlinear systerhance the response of anpriori nonlinear detector. This

is bounded by the output SNR of the linear fili@r input  enhancement appears to occur for a variety of combinations
SNR). (linear/nonlinear, local/global, ejcof coupling and noise

On the other hand, the output SNR of a nonlinear filterscenarios. In this work, we have considered only cyclic and
may exceed its input SNR under special circumstances. Thaub-thresholdi.e., there is no deterministic switchingig-
bandpass limiter is a circuit which illustrates this effect. It nals; for supra-threshold signals, a variety of other nonlinear
consists of a bandpass filter followed by a thresHold"in- effects come into play, and the output SNR can actually ex-
finite limiter”) circuit. The bandpass filter removes all sig- ceed that at the input. The SR scenario envisions the noise-
nals outside a narrow band of interest, and the thresholdssistednterwell or hopping motion as the primary carrier of
circuit converts the analog output of the bandpass filter to @anformation through the system; intrawell motion is ne-
two-level output ¢V if the bandpass filter output is posi- glected. The maximization of the output SNR has been
tive, —V if negative. This nonlinear device improves the showri®to be directly the result of spatio-temporal synchro-
SNR of a signal by tacitly assuming that the signal powemization of the array dynamics to the external signal. This
exceeds the noise power. When the assumption holds, tteynchronization, which leads to scaling relationshifisat
SNR increases by several dB. However, when the assumpan be addressed in the framework of a continupihrfield
tion fails, the SNR decreases slightly. The fact that there is ¢heory of kink—antikink nucleatioh has been demonstrated
positive SNR gain only above a certain threshold input SNRn the experimenfsthat are reviewed in this work.

(the “threshold effect’) is a universal phenomenon generic It should be emphasized that the occurrence of AESR in
to all nonlinear processofé. such a diversity of systenm{goupled map lattice¢* model,

We conclude this section with a few sweeping remarkscoupled resonators, coupled ODE@ives strong evidence
We have considered in detail locally, linearly coupledfor its universal nature. Unlike the elements in the numerical
damped nonlinear oscillators subject to local noise, as wekimulations, the resonators in the experimental setup were far
as globally, nonlinearly coupled model neurons subject tdrom identical. Crucial parameters, such as energy barriers or
global noise. We have not found great differences attributiocal noise intensities varied significantly. The relatively
able to the particular choice of nonlinearity, nor global vsstrong coupling serves to smooth out these inhomogeneities
local coupling. However, linear vs nonlinear coupling andand approach the continuum limit. The absence of coupling
global vs local noise can make a great deal of difference innduced long-range spatial correlations in the coupled map
certain cases. For example, linear coupling has little to ndattice and its resulting limitations for SR enhancement
effect on identical oscillators subject to global noise; noragrees well with the proposed mechanism of kink—antikink
does the summing of outputs. However, as remarked aboveucleatior?
nonlinear coupling can completely remove oscillator nonlin-  Beyond the tantalizing implications of this collective be-
earities for some configurations of identical oscillators sub-havior in biological neural networks and bioengineering re-
ject to global noise. ceptors, for example, the practical problem of exploiting SR

The issue of local vs global noise deserves further comand AESR in signal detection scenarios has recently attracted
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