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We investigate the response of a linear chain of diffusively coupled diode resonators under the
influence of thermal noise. We also examine the connection between spatiotemporal stochastic
resonance and the presence of kink–antikink pairs in the array. The interplay of nucleation rates and
kink speeds is briefly addressed. The experimental results are supplemented with simulations on a
coupled map lattice. We furthermore present analytical results for the synchronization and signal
processing properties of aF4 field theory and explore the effects of various forms of nonlinear
coupling. © 1998 American Institute of Physics.@S1054-1500~98!01503-1#
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We extend the phenomenology of stochastic resonanc
„SR… to arrays of coupled dynamic elements. For cor-
rectly chosen parameters, such as coupling and nois
strength, the signal-to-noise ratio„SNR… can be signifi-
cantly enhanced over that of a single element. We dem
onstrate that for optimized parameters, the greatly im-
proved system response is characterized by a globa
synchronization of the array and a locally maximized
SNR. Furthermore, the system switches phase not con
currently but via the formation of energetically cheaper
kink –antikink pairs. We present experimental evidence
for all these phenomena and support the findings with
results from a coupled map lattice. We conclude with a
discussion of the signal processing properties of large ar
rays of nonlinear dynamic elements, and the effects stem
ming from different forms of coupling, and global/local
noise.

I. INTRODUCTION

Stochastic resonance~SR! is a process in which noise—
acting on a nonlinear, multi-stable system, which is mo
lated by a weak external driving signal—enhances the p
odic character of the system response.1 The output signal-to-
noise ratio ~SNR! is maximized (SNRmax) by a nonzero
value of the applied noise. While the notion of SR originat
in the context of a single bistable system described by
ordinary ~stochastic! differential equation, it was also foun
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to occur in more general systems described by field~partial
differential! equations over a decade ago.2 Only lately
though, stochastic resonance in spatially extended syst
experienced a surge in research activities.3–9 In particular,
locally or globally coupling the single ‘‘stochastic reson
tor’’ into larger arrays revealed promising results with r
spect to signal processing abilities.

The termarray enhanced stochastic resonance~AESR!
was recently introduced by Lindneret al.3 to describe spa-
tiotemporal SR in a numerical model of coupled, bistab
oscillators. The response of one nonlinear, overdamped
cillator could be further optimized by coupling it locally an
linearly into a one-dimensional array of identical oscillato
The SNRmax was significantly improved for selected value
of the coupling strength and the number of elements in
chain. It was also shown that optimizing the SNR of an
dividual oscillator coincided with the onset of maximal sp
tiotemporal synchronization. Scaling laws for the optimu
noise intensities and coupling strengths resulting in a ma
mum SNR as a function of the number of oscillators,N,
were derived in Refs. 8, 9. Possible applications for AE
are expected to be found in biological systems and within
area of signal processing.

II. SPATIOTEMPORAL STOCHASTIC RESONANCE IN
A SYSTEM OF COUPLED DIODE RESONATORS

A. Array enhancement

In this section we sum up the main results from Ref.
We report experimental evidence of AESR in a chain
diffusively coupled nonlinear resonators. TheSNRmax of the
output of one of the middle resonator is observed to incre
with the number of elements, here up to 32, for open a
periodic boundary conditions. Both the optimal noise inte

t-
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sities as well as the optimal coupling strength grow with
length of the array. The array enhancement is most disc
ible when the resonators are fairly identical. In the expe
mental setup, the variation in the depth of the potential w
is slightly less than 10%. We experimentally verify that gl
bal spatiotemporal synchronization coincides with optimiz
local performance of a single element in the chain. It is f
thermore demonstrated that spatial correlation lengths
maximized by a nonzero noise power analogous to the
havior of the SNR.

For the bistable element we choose the diode resona
which follows the period doubling route to chaos.10 The glo-
bal, sinusoidal drive serves as a bifurcation parameter.
operating in the stable period-2 regime, the two~equally
stable! phases give rise to the bistability. We break the ph
symmetry by adding a secondary drive signal of half
primary drive frequency, rendering one phase more sta
Phase switching can be induced if~i! the frequency of the
added signal is not exactly half the drive frequency, givi
rise to a slow beat, and~ii ! the amplitude of this resulting
low-frequency modulation signal is larger than some thre
old. If the amplitude of the modulation signal is chosen b
low the switching threshold, additional noise is necessar
cause phase jumps. We note that similar symmetry brea
driving signals were utilized in Refs. 11 to achieve phase
trajectory selection. A block diagram of the symmetrica
coupled diode resonators is given in Figure 1. The ne
neighbor coupling is realized via the coupling resistorsRC .
In previous work12 the coupling strength was found to b
roughly proportional to 1/RC . The frequencies of the mai
drive and the second drive are fixed at 70 kHz and 35.1 k
respectively, resulting in a beat frequency of 100 Hz. T
signals are virtually noise-free within the accuracy of inst
ment precision, i.e., the amount of correlated noise in
array is negligible.~For an interesting discussion on the i
terplay between internal and external noise in ensemble
nondynamical elements, see the last reference in Ref.!
This situation is in close analogy to arrays of phase-loc
loops in antennae which can be assumed to be practic
free of correlated noise but are exposed to spatially unco
lated fluctuations.

FIG. 1. The circuit diagram sketching the individual noise sources and
2nd drive added to the main drive. Each diode resonator consists of a d
and an inductance in series. The diffusive coupling is realized via the
pling resistorRC . The coupling strength is roughly proportional to 1/RC .
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We operate the secondary drive at roughly two thirds
the switching threshold amplitude, so that the resonators
confined to one phase if no noise is added. Note that
does not correspond to the weak forcing limit and thus c
not be treated utilizing linear response theory. A differe
noise source is used for each site, so that there is zero n
correlation between sites. The individual noise sources
far from identical; the standard deviation in the voltage flu
tuations between sites is around 10%. The noise is obta
by amplifying shot noise generated by a current through a
junction diode, and exhibits a flat power spectrum up to
least 100 kHz. The noise intensity is measured in two diff
ent ways throughout this paper:input intensity~‘‘arb. units’’!
represents the average of the 32 noise sources and is eq
2.3310219 V2/Hz. Outputintensity is obtained by taking the
power spectrum and measured in dB. We process the cu
through the diode from the middle resonator of the ar
with a dynamic signal analyzer in order to compute t
power spectra. The SNR is calculated by measuring the
nal power in dB at 100 Hz and subtracting the noise powe
the immediate vicinity of the signal. For accuracy the pow
spectrum is averaged over 20 measurements.

Stochastic resonance in a single system is character
by a maximum in the SNR curve as the noise power is v
ied. A typical SNR curve is presented in Figure 2, clea
showing the so-called ‘‘fingerprint of stochastic resonance
a sharp rise to a maximum SNR at a finite noise intensity
a subsequent slow decay of the SNR towards higher va
of noise.

In the case of an array there are two additional dim
sions in parameter space to be mapped out: the coup
strength as well as the number of elements. In Figure 3,
maximum SNR’s for a fixed number of diode resonato
~eleven! and various coupling strengths are plotted vers
input noise intensity. Note that smaller values ofRC result in
stiffer coupling. The horizontal bars are a measure of
width of the peaks of the SNR curves. For optimal coupli
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FIG. 2. SNR versus noise power for a single diode resonator. The s
increase and the following decrease of the SNR are characteristic for
chastic resonance.
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~in this case 100 kV! the peak was very broad. Two ma
tendencies found in Ref. 3 are verified here. As the coup
becomes more and more rigid,~i! SNRmax is assumed a
higher noise intensities, and~ii ! its value initially rises, peaks
at some intermediate coupling strength and abates.

Intuitively, ~i! and ~ii ! can be understood in the follow
ing way.3,5 With stiffer coupling, the chain behaves more a
more like a rigid rod, so that a greater fraction of oscillato
switch phase synchronously. But the intensity of the sum
N uncorrelated Gaussian noise sources scales likeAN, thus
requiring higher noise intensities at the individual sites
eitherN or the coupling increase. As pointed out by Colli
et al.,6 not only does the SNR peak shift to higher noi
intensities but it also broadens significantly as the numbe
elements is growing. In their numerical simulation, the in
vidual, uncoupledsites of the array were represented
models of neurons, whose outputs were simply add
Though conceptually different in design—excitable neuro
instead of bistable oscillators and no coupli
parameter—we found evidence for a widening of the peak
well. Figure 4 displays the SNR curves for various arr
sizes, optimized over coupling. The tails of the graphs
seen to fall off notably less rapidly for a higher number
resonators. We believe that this effect is also due to the
that the noise sources are independent, hence partially
celling each other, whereas the signal power is being ad
coherently.

In Figure 5 we plot the enhancement inSNRmax, maxi-
mized over noise, versus coupling strength for some of
different array sizes we examined.

The reference value of zero thus corresponds to
maximum SNR achieved with a single diode resonator. T
increase inSNRmax occurs rather markedly for three site
and appears to saturate with higher numbers. For very low
well as for very high coupling, theSNRmax of the chain
approaches the one for a single oscillator, as discus
above.

For 32 oscillators the maximum enhancement we w
able to achieve was 9.5 dB. Only 7 oscillators were suffici
to increase the maximum SNR by 8 dB. The optimal co

FIG. 3. Maximum SNR of the middle oscillator (N511) for seven different
coupling strengths. With optimum coupling, in this caseRC5100 kV, the
SNR of eleven diode resonators surpassed the SNR of a single eleme
roughly 8 dB. The horizontal bars are a measure of the width of the pe
g
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pling resistor for 32 oscillators was found to beRC

515 kV, compared toRC5120 kV for 3 resonators. Since
the coupling strength scales like 1/RC , this corresponds to an
eight times stronger coupling.

When applying the noise globally to five resonators,
do not find any coupling enhancement, which appears
agreement with conclusions from earlier numeric
simulations.8,9 The effect of different boundary conditions
most notable for low numbers of oscillators. When emplo
ing periodic boundary conditions with just three oscillato
the maximum reachable SNR is slightly lower and shi
towards weaker coupling. Intuitively, theeffectivecoupling
is lower for open boundary conditions than for a closed lo
explaining the shift. Already for 7 and 11 oscillators no d
pendence on the boundary conditions could be detected

by
s.

FIG. 4. SNR curves for different numbers of resonators. From top to b
tom: N532,11,3,1. The respective coupling strengths are optimized.
curves and their peaks are seen to broaden with an increasing numb
elements.

FIG. 5. Maximum SNR enhancement, maximized over noise, is plo
against the coupling strength. To aid the eye the symbols are connected
dotted lines. The different lines correspond to the different number of re
nators. For clarity the graph forN55 was omitted. Larger arrays clearl
enhance the maximum SNR.
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B. Global vs local dynamics

The emphasis so far has been on the performance
single element in the array. In order to obtain a more glo
perspective connecting the local dynamics to the behavio
the entire array, we adopt the notion of theoccupancyfunc-
tion, which was introduced in Ref. 3. It constitutes a meas
of the average spatiotemporal synchrony and is defined
the percent of resonators assuming the preferred phase a
extremes of the modulation signal. Theextremesof the
modulation signal are understood as the two unique ph
of the beat frequency which result in maximum asymme
in the size of the two basins of attractions. The respec
values were inferred experimentally by choosing the am
tude of the secondary drive to lie barely above the thresh
and measuring the phase of the beat at the instant of a p
jump.

By definition, an occupancy value of 100% correspon
to perfect spatialand temporal synchronization, wherea
50% occupancy can be caused by either complete sp
disorder~high noise power! or by a spatially uniform chain
of resonators confined to one phase~low noise limit!. We
measure the occupancy function using a device that peri
cally samples the state of all resonators simultaneously
then provides a sequential analog output of the states.
output contains information on correlation lengths, and
time average is a measure of the occupancy function.

Figure 6 clearly demonstrates the strong correlation
tween the locally measured SNR and the globally determi
occupancy. The graphs almost mirror each other and pea
the same noise power, thus verifying that maximum S

FIG. 6. Occupancy~n! and SNR~s! for 32 resonators versus noise pow
~periodic boundary conditions!. Note that for this plot the intrawell motion
was discarded, so that the SNR truly approaches zero for low noise po
The coupling resistor was chosen to be optimal,RC515 kV. The histo-
grams display the distribution of domain length scales, at noise powers
1.6, and 2.3~from left to right!. The arrows indicate the correspondin
values of occupancy/SNR. Each histogram is comprised of about 200
points.
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coincides with optimal spatiotemporal synchronization of t
array.3–5,8,9

While the occupancy function is an efficient, combin
measure for spatial and temporal correlations, it hides so
of the more subtle, purely spatial features. In particular,
are interested in length scales, i.e., distributions of dom
lengths, wheredomainsare contiguous blocks of in-phas
resonators. The three histograms in Figure 6 illustrate
change in dominant length scales as the noise is varied.
histograms have to be interpreted with caution: the frequ
cies reflect the occurrence of domain lengths per temp
snapshot which naturally favors shorter lengths. In orde
obtain the probability of detecting a particular length at
random site the frequencies have to be rescaled with wei
proportional to their respective domain lengths.

Low but finite noise power overcomes the coupling on
sporadically, giving rise to a dominant peak at bin 32 a
rather low frequencies for smaller domain lengths~the far
left histogram!. For intermediate/optimum noise strength t
peak at bin 32 is even more pronounced, and shorter dom
lengths are almost entirely absent. The probability to dete
domain length>M at a random site at a random time mig
serve as a convenient quantifying measure for spatial co
lation. For M532, this probability increases from 60% t
80% from the far left histogram to the middle one.

This counterintuitive behavior—adding more noise ac
ally increases spatial correlation—could be viewed as
spatial analogy to ‘‘temporal’’ stochastic resonance in
single system where a temporal correlation function is ma
mized by a finite noise power. High noise intensity leads
very short spatial correlations, which is confirmed in the
right histogram.

III. KINK–ANTIKINK NUCLEATION IN A f4 MODEL

It was shown by Marchesoni and coworkers5 that in the
limit of strong coupling the discrete system of coupled Du
fing oscillators from Ref. 3 approaches the dynamics of
f4 model. Scaling laws were derived in a subsequent pa8

which confirmed the analogy between the discrete setup
the continuousf4 field theory. The phenomenon of AES
and its associated kink–antikink dynamics does not dep
on the exact form of the local bistable potential. Hence,
strong coupling we expect to observe very similar pheno
enology in the experimental setup. The present section s
marizes the results from Refs. 5, 13 and is intended a
tutorial overview of kink nucleation theory. In Sec. IV w
present qualitative evidence for the validity of the kink
antikink picture in the experiment. It serves as the conne
ing thread between the abstractf4 model and the system o
coupled nonidentical diode resonators.

In the continuum limit, af4 model is described by the
differential equation

f tt2c0
2fxx1v0

2V8@f#52af t1z~x,t !1F, ~1!

whereV@f#5(1/8)(f221)2 andz(x,t) denotes a Gaussia
noise source with spatiotemporal correlatio
^z(x,t)z(x8,t8)&52akTd(x2x8)d(t2t8). The f4 theory
is known to bear both extended~phonons! and localized
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~soliton! solutions. Localized solutions can be convenien
reproduced as a linear superposition of uniformly mov
kinks, f1 , and antikinks,f2 , with14

f6~x,t !5tanhF6
1

2d

x2X6~ t !

A12Ẋ6
2 ~ t !/c0

2
G , ~2!

provided that the separation between their centers of m
X6 is very large compared with their sized[c0 /v0 ~dilute
gas approximation!. The equilibrium kink~antikink! density
in the symmetric (F50) f4 model at finite temperature i
known,14

n65n05S 3

2p D 1/21

d S E0

kTD 1/2

exp~2E0 /kT!, ~3!

whereE05(2/3)v0c0 is the rest energy andM05E0 /c0
2 is

the mass off6 . It follows that the dilute gas approximatio
holds for n0

21@d, that is at low temperatures,kT!E0 . In
such a regime,̂ Ẋ6

2 &5kT/M0!c0
2 , so that the relativistic

boost factor in Eq.~2! may be approximated to unity.
The perturbation forcesz(x,t) andF cause a rigid trans

lation of the kink~antikink! against whichf6 is in neutral
equilibrium. In other words, the shape off6 is not affected
by the perturbation, whereas its center of mass coordina
replaced by a random variableX6(t). In the overdamped
limit, a@v0 , a single kink~antikink! undergoes a driven
Brownian motion described by the Langevin equation,13,15

Ẋ6572F/aM01h~ t !, ~4!

whereh(t) is a Gaussian, zero-mean valued random fo
with correlation function̂ h(t)h(0)&52(kT/aM0)d(t): the
static forcing termF pulls f6 in opposite directions with
average speed

u65^Ẋ6&572F/aM0 . ~5!

The elementary mechanism which allows af4 chain to
switch between its vacuum configurationsf561 is the
nucleation of kink–antikink pairs. Thermal fluctuations are
expected to trigger the process by activating a criti
nucleus, the size of which may be shown to increase w
decreasingF. Provided that the size of the critical nucleus
small enough to ignore many-body effects16 due to the equi-
librium kink–antikink gas with density~3!, we can describe
the nucleation process as a local two-body process:the rel-
evant saddle-point configuration is represented by suc
critical nucleus and not by the unstable homogeneous s
tion f50! This introduces a spatial correlation length in t
chain switching mechanism.

The nucleation rateG, defined as the number of kink
antikink pairs nucleated per unit of time and length, can
calculated analytically in the limits of strong damping,a
@v0 , and low temperature,kT!E0 , introduced above. Fo
simplicity, we assume that the chain sits initially in the sta
homogeneous statef0(x)521 and that the forcing termF
is constant and positive definite. A large nucleusfN(x,X)
with length 2X@d is well represented by the linear superp
sition of a kink and an antikink centered at7X, respectively,

fN~x,X!5f1~x1X,0!1f2~x2X,0!11. ~6!
ss

is

e

l
h

a
u-

e

e

Here the center of the nucleus has been set at the o
without loss of generality. Its components experience t
contrasting forces: an attractive force due to the vicinity
the nucleating partner and a repulsive force due to the ex
nal biasF. In view of Eq. ~6!, the potential function corre-
sponding to the internal force is5

VN~X!5E
2`

1`

H@fN~x,X!#dx

56E0@~22/313K22K2!1~X/d!~123K222K3!#,

~7!

with K5tanh21(X/d) and forX@d may be further approxi-
mated to

VN~X!52E0@126 exp~22X/d!#. ~8!

The potential of the external forceF can be determined by
integrating the drift term of Eq.~4!, that is 62FX. The
critical nucleus configurationfN(x,R) is attained for a rela-
tive kink–antikink distance, 2R(F), such that the two com-
peting forces compensate each other, i.e., for

2R~F !52d ln~Fd/12E0!, ~9!

and decays through one unstable mode, only—the collec
variableX(t)—with negative eigenvalue

l0
N5VN9 ~R!/M0524F/M0d. ~10!

Moreover, its energyDEN(F) is obtainable through Eq.~8!
after replacingX with R(F).

In the Gaussian approximation, the nucleation rate
the biasedoverdampedf4 chain is given by Langer’s
formula,13,15

G25
ul0

Nu
2p

ZN

Z0
exp~2DEN /kT!, ~11!

whereZ0 and ZN denote the~subtracted! partition function
for the vacuum and the critical nucleus field configuratio
respectively. The entropic factorZN /Z0 accounts for both
the phonon modes~with continuum spectrum!, which
‘‘dress’’ f0(x) andfN , and the two internal modes offN

with discrete~nearly degenerate! eigenvalueslb
N5)v0/2.14

A standard calculation yields the following analytical expre
sion for G2 :5

G25
9

p

v0
2

ad S F

3p D 1/2S DEN

kT D 1/2

. ~12!

The validity of Eq.~12! is restricted by the condition tha
kT/E0!F/v0

2!1 ~strong bias regime!. The inequalityF
!v0

2 corresponds to requiring that the tiltedf4 potential
v0

2V@f#2Ff retains its bistable nature and, more impo
tantly, that the relevant offset off6 in Eq. ~2! may be ig-
nored. As a matter of fact, that would amount to rescal
v0→v0A12F/v0

2 or, equivalently, for the stationary spee
of the driven kink~antikink!,17

u6→u6 /A12F/v0
2. ~13!
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Note that this ‘‘concavity’’ in the kink speed is observe
experimentally~see Sec. IV A and Fig. 9! and in the model
~see section V C and Fig. 14!.

The inequalityFd@kT is implicit in Langer’s derivation
of formula ~11!. In Ref. 13 the two-body model has bee
solved without having recourse to the Gaussian approxi
tion: the corrected formula for the nucleation rate in the we
bias regimekTn0(T)!F!kT/d reads as

G1~F !5G2~F !k~F !, ~14!

with

k~F !52pA Fd

pkT
~15!

andDEN(F);2E0 . This second expression forG is compat-
ible with the linear response theory requirements16 and can
be cast in a more suggestive form, namely,

G152~2n0~T!!2uu6u. ~16!

Equation~16! is the kinetic model prediction for the nucle
ation rate in an overdampedf4 theory.13

The reason for switching fromG2 to G1 lends itself to a
direct experimental verification~see Fig. 15, below!. In the
Gaussian approximation the nucleation mechanism is c
trolled essentially by thermal activation; the decay time
the critical nucleus is taken to be finite and negligible w
respect to the activation time. In the weak bias regime, h
ever, the parabolic approximation~10! is not accurate15 and
the nucleus decay is better described as a steady dow
sliding motion with speeduu6u; the nucleation process i
then deemed accomplished only after the nucleating part
have covered a distance of the order of the mean free
n0(T)21. Finally, for F!kTn0(T) many-body effects be
come dominant and the critical nucleus picture is of no us16

IV. NUCLEATION OF KINK–ANTIKINK PAIRS IN THE
EXPERIMENT

While not intended to serve as a rigid experimental ve
fication of the universality of the findings for thef4 model
derived in the previous section, Figure 7 provides strong s
porting evidence for the above summarized arguments
order to demonstrate the various widths of nuclei for diff
ent coupling strengths, we operate in a noise free, s
threshold drive region and induce a kink–antikink pair at s
16 in the following way. The amplitude of the 2nd drive
site 16 was increased until phase switching occurred. N
that we are not able to make any statements about the si
the critical nucleus since this is a forced nucleation. F
loose coupling the transitions are very sharp, and the w
of the nucleus is seen to be only a fraction of the latt
length ~Fig. 7a!. If the coupling is chosen to be rather tig
~Fig. 7c!, the kink–antikink pair extends well beyond th
system boundaries. The shape of the nucleus in the cas
optimum coupling is illustrated in the graph b. The width
the nucleus, defined as the distance between the cente
the kink/antikink, is of the order of half the chain. The co
responding SNR is significantly higher than in the cases
and c.
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In order to see how kink–antikink pairs are nucleated
a noisy environment, Figure 8 shows staggered snapsho
the thermal nucleation and subsequent spreading of a ki
antikink pair.

In the hope of gaining more insight into the dynamics
the hopping process of the array for various coupling a
noise strengths we examine two significant time scales
more detail:~i! the speed of each component of a nucleat
pair as a function of forcing amplitudes and~ii ! the kink
nucleation rates as a function of temperature,18 both for a
range of coupling strengths. For the remainder of this s
tion, the number of resonators is fixed to 32, and perio
boundary conditions are employed.

FIG. 7. Each graph contains three snapshots of the 32-resonator chain
onstrating the formation and spreading of a kink–antikink pair for th
different coupling strengths and open boundary conditions. The curves
staggered with time evolving downwards. The brackets indicate the
tremes of the phase. The kink/antikink widths are seen to vary dramatic
with coupling strength: loose coupling in a (RC5180 kV), tight coupling in
c (RC53.9 kV), and optimal coupling for b (RC515 kV). The SNR’s of a
and c are 2.2 dB below the one achieved with the configuration b.

FIG. 8. Shown are staggered snapshots of the 32-resonator chain de
strating the thermal formation and subsequent spreading of a kink–anti
pair. The curves are separated by eight drive cycles with time evolv
upwards. The employed coupling resistor is 68 kV.
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In the continuum case of the overdampedf4 theory, the
motion of a kink was shown to be a driven Brownian wa
where the deterministic part of the velocity depends linea
on the forcing amplitude; see Eq.~5! in Sec. III. It is quite
educational to compare this theory with the case of coup
~i.e., discrete!, nonidentical elements. Figure 9 shows t
measured kink velocities in the experimental setup~in a
noise free environment! for a broad range of coupling resis
tors. A linear relationship can clearly be verified over
intermediate range of force values. For low values of
coupling strength both discreteness effects and inhomog
ities slow down the kink propagation. The inhomogeneit
arise because the elements are not identical and the n
intensity has a non-negligible variation from site to si
Thus, the local ‘‘barriers,’’ i.e., the energies needed to indu
a transition vary significantly, which leads to kink trappin
Discreteness effects also affect kink speeds for low eno
forcing, even if all elements are identical. The model
which is developed later in this article—shows a finite cut
for the velocity at low coupling strengths due to its discre
nature; see Figure 14. Also, nonlinear effects for higher fo
ing can be recognized both in Figure 9 as well as later in
model. A nonlinear rescaling of the kink speed is predic
by the f4 theory; see Eq.~13!. For forcing values higher
than;2.6 inhomogeneities lead to multiple kink nucleatio
corrupting the measurements. The curves in Figure 9 co
sponding to the extreme coupling values, 6.8 kV and 180
kV, should be evaluated with caution: For very weak co
pling (180k) the kink would move only for relatively strong
forcing, while for strong coupling (6.8k) it is impossible to
nucleate a kink at all in case of low forcing.

As one would expect, the time it takes for a kink
antikink pair to travel around the loop is much shorter th
one drive period.~In this case for the beat frequency of 10
Hz and the forcing amplitude used in the SNR measurem
as described above.! How does this time relate to the avera
time it takes to nucleate the first critical nucleusTnuc? In the

FIG. 9. Kink speed as a function of force for various coupling streng
From top to bottom:RC56.8 kV, 15 kV, 27 kV, 68 kV, 100 kV, 180 kV.
~Note that the coupling strength isinverselyproportional to the value of the
coupling resistors.! The force is a measure of the asymmetry of the basin
attraction of the two phases. The curves are well fit by a straight lines.
low coupling strength and low forcing, kinks can get trapped due to
creteness effects and inhomogeneities.
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experiment we are not able to get an accurate measure
of Tnuc ; instead we can measure average decay times,
the time it takes for the whole chain to decay from its me
stable phase into the stable phase. Assuming that the de
time after a kink–antikink pair was created~this time de-
pends inversely on the kink speed! is small compared to the
time it takes to nucleate the first pair, a good estimate
Tnuc will be half the average~total! decay time. Of course
this approximation breaks down for high noise intensit
since the nucleation rate then becomes comparable to
kink speed. We remark that the total decay time is the m
tidimensional equivalent of the inverse Kramers rate fo
single system. Figure 10 shows this half-time as a function
inverse temperature.18 A step force of 2 units~see Figure 9!
is applied to the chain of diode resonators initially being
the energetically less favorable phase. We then measure
average decay rates into the stable phase and plot the~aver-
age! time it takes forhalf the elements to switch phase. Th
curves are roughly piecewise linear on the logarithmic sc
indicating an exponential law in each of the two sections

V. SPATIOTEMPORAL STOCHASTIC RESONANCE IN
A SYSTEM OF COUPLED LOGISTIC MAPS

A. Stochastic resonance in the logistic map

As a low-dimensional dynamical system exhibiting t
period doubling route to chaos, the diode resonator is kno
to be modeled fairly well by a one-dimensional quadra
map.10 Well established in previous work12 we choose a
chain of ~symmetrically! coupled logistic maps as a compu
tationally efficient representation of the experimental setu

xn11
i 5~12e! f ~xn

i ,r !

1 1
2 e@ f ~xn

i 21 ,r !1 f ~xn
i 11 ,r !#1Dz i ~17!

@i P@1,N#, n[time, f (x,r )5rx(12x), xP(0,1)#. The ad-
justable parameterD alters the intensity of the normally dis
tributed deviatez i which has zero mean and unit variance19

and is independent from site to site.

.

f
or
-

FIG. 10. Half-time~as defined in the text! as a function of inverse noise
intensity, for various coupling strengths: From left to right:RC56.8 kV, 15
kV, 27 kV, 68 kV, 100 kV, 180 kV. Two regions can be separated in whic
the curves are approximately linear, each with a different slope. Note
the coupling strength isinverselyproportional to the value of the coupling
resistor.



an
ta

is
ic
f

ig

io
e

w
f
in

s
m
u
in

ar

s:

nt

is-

the
can

re-

c
axi-

ap
if-
of
n-
he
el-
n-
d
The
ef-
ink
en
–34
wo
ng

ng

axi-
ble
t to
by
NR
32
re-

the
op-
of

4.
ph.

om
s
ns

tra
lu
he

611Chaos, Vol. 8, No. 3, 1998 Löcher et al.
We remark that stochastic resonance in maps
coupled map lattices of a different nature is treated in de
in Ref. 20. In analogy to the experiment, the nonlinearityr is
selected to lie within the stable period-2 regime of the log
tic map, giving rise to a bistability via the two symmetr
phases. Since the value ofr corresponds to the amplitude o
the main drive of the diode resonator, the ‘‘modulation s
nal’’ is added to this parameter in the following way.

The phase symmetry is broken by a period-2 modulat
of r ~equivalent to the 35 kHz component of the 2nd driv!:

r[r n5 H r 01dr ,
r 02dr ,

for n even,
for n odd,

enlarging the size of the basin of attraction of one of the t
fixed points ofF(x,r 1 ,r 2)[ f ( f (x,r 1),r 2) on the expense o
the other. Again, this method of symmetry breaking is
close conceptual analogy to previous work by Yanget al.11

Figures 11–12 serve to illustrate the change in the size
the basins of attractions. Figure 11 shows the 2nd return
of the logistic map with no modulation. A moderate mod
lation is applied in Figure 12 resulting in an asymmetry
the basin of attraction size. The phase slip occurs whendr is
sufficiently big so that one of the basins entirely disappe

FIG. 11. The 2nd return map with no modulation,dr 50 (r 53.2).

FIG. 12. The 2nd return map with modulation,dr 50.04, illustrating how
the basin of one fixed point grows at the expense of the other (r 53.2). The
phase determines which return map is obtained; first adding, then sub
ing dr on the 2nd iteration enlarges the basin of the smaller fixed va
~solid curve!, while the bigger fixed value appears more stable in the ot
phase~dashed line!.
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The modulation can eliminate two of the three~period-
one is still present! fixed points as can be seen as follow
xn125xn⇔ f ( f (x,r 1),r 2)5x⇔15r 1•r 2•(12x)•@12r 1•x
•(12x)#⇔x31a1•x21a2•x1a350, with a1522, a2

5(11r 1)/r 1 , and a35(12r 1r 2)/r 2r 1
2. This third order

polynomial has three real distinct roots if the discrimina
D5Q31R2,0, where Q5(3a22a1

2)/9, and R5(9a1a2

227a322a1
3)/54. Therefore, the threshold fordr causing a

phase jump can be found by solving for the root of the d
criminant,D5D(r 1 ,r 2)5D(dr ), with r 1,25r 06dr .

Regarding the~unstable! period-one fixed point as the
boundary between the two different basins of attraction,
mechanism of stochastic resonance in this particular case
be viewed in the context of a crisis.21

The actual signal, i.e., the equivalent of the beat f
quency in the experiment, is superimposed by makingdr
‘‘time’’-dependent: dr[dr n5dr 0 sin(2pvn), with fre-
quencyv!1. A plot of the SNR vs noise for a single logisti
map displays the typical SR-behavior: a sharp rise to a m
mum and a slow decay for greater noise intensities.

B. AESR in the coupled maps

The different nature of the coupling in the coupled m
lattice and the coupled oscillators results in significant d
ferences in the limit of low and high coupling. A measure
the qualitatively different coupling is the maximum obtai
able kink width, i.e., the number of sites which constitute t
domain boundary. While for the time-continuous coupled
ements the kink width at least in principle grows proportio
ally to the coupling strength, the kink width in the couple
map lattice cannot be pushed beyond eight to nine sites.
limited long range correlations in a coupled map lattice
fects the maximum achievable SNR. Since the local k
nucleation cannot involve more than sixteen to eighte
sites, the SNR is expected to saturate for more than 32
maps. Figure 13 verifies this trend and also displays t
curious differences to the case of the coupled Duffi
oscillators3 and the coupled diode resonators:4 ~i! The SNR
is significantly enhanced already for very weak coupli
strengths (e50.00220.01); and~ii ! after reaching a plateau
which depends on the number of coupled maps, the m
mum SNR does not decrease significantly over the availa
range of coupling values. These two issues will be subjec
further investigation. The array enhancement is verified
the coupled map simulations; the maximum achievable S
for a single logistic map is around 18 dB, the SNR for
optimally coupled maps is between 25 and 26 dB. The
sulting enhancement of 7.5 dB is significant.

C. Decay rates and speeds for the coupled maps

In order to understand the phase switching process in
coupled map lattice, as before, we study the dynamic pr
erties of kinks in this section. The kink speed as a function
bias for different coupling values is shown in Figure 1
Several key observations can be gathered from this gra
Each curve displays a linear region which is expected fr
theory; see Eq.~4!. The concavity behavior for larger force
~bias! qualitatively agrees well with the nonlinear correctio
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obtained in thef4 theory discussed in Sec. III; see also E
~13!. Only curves corresponding to coupling values larg
than 0.3 go through the origin. For low coupling the discr
nature of the system requires a nonzero force for kink pro
gation. This finite speed cutoff at low forces increases w
decreasing coupling as can be seen in Figure 14.

Unlike in the experiment, it is straightforward in th
coupled map lattice to separate the kink–antikink pair nuc
ation from the subsequent spreading through the entire a
We expect the nucleation process to have an expone
dependency on the noise strength while the subsequent d
should be regarded as an almost deterministic process.
measured the average number of iterations it takes to nu
ateonepair under an applied bias as well as the average t
it takes to fully decay into the stable phaseafterwards. Fig-
ure 15 shows these two quantities as a function of no
intensityD along with the sum and the corresponding SN
The sum will be the most accessible variable to be meas
in experiments. It can be considered as the equivalent of
average waiting time for one uncoupled system. With
added spatial dimension it can be nicely dissected into

FIG. 13. The maximized SNR vs coupling for different numbers of coup
logistic maps. From top to bottom:N532,15,9,5,3. The parameterr 53.2
was chosen such that each individual map is in a stable period two.
signal amplitude is sub-thresholddr 50.04.

FIG. 14. The same as Fig. 9 for the coupled map lattice. Shown are the
speeds for different values of the coupling parameter~labeling the curves! as
a function of applied bias/force.
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distinct components corresponding to the two processes
scribed above. The time it takes to nucleate the first k
decreasesF exponentially with the noise intensityD. As can
be seen in Figure 15, the subsequent decay time is a slo
decreasing function of the noise, which implies that the~an-
ti!kinks propagate faster for increasing noise. This effec
discussed and utilized in more detail in a forthcomi
publication.22 We plot the SNR on the same graph to illu
trate a curious phenomenon: the minimum of the SNR
assumed at almost exactly the noise level where the
time-scales cross. The universality of this coincidence is s
a topic of ongoing research.

In order to stay close to the experiment we also m
sured the half time for the coupled maps. Figure 16 is
equivalent of Figure 10 for the coupled map lattice. T
measurement procedure is identical to the experiment: A
force ~bias! of 20.01 is applied at time zero to the couple
maps initially being in the less favorable phase. We th
measure the number of iterations it takes for half the map
decay into the stable phase.

d

he

nk

FIG. 15. Average time~# of iterations! it takes to nucleate the 1st kink
~circles!, then to fully decay~diamonds!, the sum~squares! as well as the
corresponding SNR~triangles, dashed line! versus applied noise. The mini
mum SNR results from the crossover of the two time-scales, i.e., when
nucleation time is equal to the subsequent full decay.

FIG. 16. The same as Figure 10 for the coupled map lattice. The coup
values~increasing upwards! aree50.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0
(r 53.2, dr 50.01).
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VI. SIGNAL PROCESSING USING COUPLED
NONLINEAR DYNAMIC ELEMENTS

In Sec. II, we discussed the enhancement of the resp
~quantified via an output SNR! of a single stochastic resona
tor, when it is coupled into an array. We have seen h
significant enhancements in the output SNR are poss
within well-defined regimes of the noise-coupling parame
space.4,8 However, in practical scenarios, the SNR is oft
not the best measure of performance. Indeed, a nonli
signal processor may output a signal which has infinite S
but is useless because it has no correlation with the in
signal. In practice, therefore, a signal detection system’s
formance is frequently characterized by measuring its pr
ability of detection and probability of a false alarm. Th
probability of detection is the probability that a ‘‘decisio
circuit’’ will report that a signal is present when in fact
signal is present. The probability of a false alarm is the pr
ability that the decision circuit will report that a signal
present when in fact a signal is not present. Detection p
formance can be summarized by receiver operating cha
teristics~ROCs!, which are plots of probability of detectio
versus the probability of a false alarm.

To illustrate some fundamentals and demonstrate
based enhancements in signal processing witha priori non-
linear detectors, we consider a very basic signal process
task: detecting a sine wave of known frequency and phas
the presence of Gaussian white noise. One can prove24 that
the best detector for this class of signal consists of an id
linear filter followed by a ‘‘decision circuit’’ which com-
pares the linear filter’s output to a threshold. If the filte
output exceeds the threshold, then the system’s decisio
that the sine wave was present. If we already know what
best detector is, why continue? In practice, there is no s
thing as an ideal linear filter. All filters add some noise a
deviate from perfect linearity. Our work relates to using co
pling to enhance the performance of physically realiza
~i.e., nonideal! signal processing elements.

Our decision circuit operates by computing the pow
spectrum of the waveform of interest~e.g., the input signal
the response of a single isolated element, or the respons
an element coupled toN21 other elements! and comparing
the power in a narrow frequency band of widthDv centered
at frequencyv to a threshold. If the power exceeds th
threshold, the decision circuit concludes that a signal w
present. A low threshold leads to high probability of dete
tion and the probability of a false alarm, while a high thres
old leads to the low probability of detection and the lo
probability of a false alarm. To produce a ROC, we repe
edly measure the power in the narrow frequency band
record the value. We do this both with and without the sig
actually present. Thus, we obtain power probability distrib
tions for the ‘‘signal’’/‘‘no signal’’ cases.9 Using these sta-
tistics, the probability of detection for any given thresho
power value may be computed by measuring the area u
the ‘‘signal’’ curve to the right of that value. Similarly, th
probability of a false alarm equals the area under the ‘
signal’’ curve to the right of the threshold value.

In recent work,9,23 we have computed the ROC curve
for the linearly coupledN-element Duffing array introduce
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in Ref. 3. For this system, the dynamics of thei th element
can be cast in the form

ẋi5kxi2k8xi
31A sin vt1Ni~ t !1Ci~e!,

Ci~e!5e~x22x1!, i 51,

5e~xi 1122xi1xi 11!, 1, i ,N,

5e~xi 212xi !, i 5N, ~18!

as well as for a somewhat different system:7

Ciẋi52
xi

Ri
1(

j 51

N

Ji j tanhxj1A sin vt1N~ t !. ~19!

Systems of the form~19! have been used as continuum an
logs of connectionist type electronic neural networks. In su
networks, xi denotes thei th neuron’s activation function
~membrane potential!, andCi , Ri denote the neuronal inpu
capacitance and trans-membrane resistance, with the
pling coefficients~synaptic efficacies! usually determined via
a ‘‘learning rule.’’ Here, we shall choose the couplings
maximize the SNR of the response of oscillatori 51. This
system differs from the previously considered system~18! in
that ~a! the noise is external~i.e., all elements are driven b
an identical noise time series!, ~b! the coupling is nonlinear,
~c! the coupling is global, and~d! a hyperbolic tangent func
tion is used for the nonlinearity. However, the two syste
share a wide range of qualitatively similar SR phenomena
both cases, we see9,23 a significant enhancement in sign
detection for the array compared to the single element. S
nal detection is, however, the best when one computes
ROCs directly for the input signal, so why bother with SR
The problem is to acquire the input signal perfectly. If t
transducer which picks up the input signal has a perfe
linear response, then it is ideal for our task of detecting a s
wave in Gaussian white noise. If the transducer has a n
linear ~assumed bistable here! response, then coupling it into
an array can improve signal detection. Indeed, there e
special cases for which the nonlinearities@the tanhxi terms in
~19!# identically cancel, giving the system a perfectly line
response to its input. For example, this occurs for a pair
identical oscillators (N52, C15C2 , R15R2 , J115J22)
with couplingsJ125J215J11 and identical initial conditions.

It is worth noting that the ROC curves can be predict
directly from the output SNR. Since we do our signal dete
tion by comparing the power in the signal bin of the FFT
a threshold, and since one bin of the FFT covers a v
narrow range of frequencies, the noise spectrum across
bin and in the vicinity of the bin looks approximately con
stant. Therefore we can approximately model the outpu
our nonlinear array~which supplies the input to the optima
detector! as a sine wave in white noise with a SNR equal
the array’s output SNR,R. For this input, the optimal detec
tor’s probability of detection~for a set false alarm probability
PFA! is24

PD5Q~A2R,A22 ln PFA!, ~20!

where



-
g
n

.
Fo

in
ns

r

in
na
o

m
rl
ea
at
N
va
e
te

te
T
I

g-
o
o
i-
e
e

, t
m
is
NR
ic

ks
ed

e
t

u
vs
nd

n
o
ov
in
ub

m

ele-
ise
any
puts
le-

nt in
add
co-
this

an
-
ent.
ere
the
es
a

or
nal
er,
ion

en-

ions

nd

ear
ex-
ise-
f

e-
en
o-
his

d

in

cal
far

s or
ly
ities
ling
ap
nt

ink

e-
re-

R
cted

614 Chaos, Vol. 8, No. 3, 1998 Löcher et al.
Q~a,b![E
b

`

z expS 2
z21a2

2 D I 0~az!dz ~21!

is Marcum’sQ function, andI 0 is the modified Bessel func
tion of the first kind and order zero. This approximatin
model gives highly accurate results except in a transitio
noise range~at low noise strength! where both intra- and
interwell motion contribute significantly to the output SNR
The response is most strongly nonlinear in this regime.
example, in this regime turning on the sine wave signal~with
input noise strength held constant! causes a large increase
both signalandnoise output power. In this case, calculatio
based on just the final value of the output SNR~with the sine
wave turned on! underestimate the signal detection perfo
mance.

Before concluding, a few words about the output vs
put SNR are in order. The optimal detector of a known sig
in Gaussian white noise is the correlation receiver
matched filter, which is a linear filter whose output is co
pared to a threshold. The optimal estimator of a linea
modulated signal in Gaussian white noise is also a lin
filter. This suggests why the output of a stochastic reson
circuit driven by Gaussian white noise has an output S
bounded by the SNR obtained by a linear filter, or, equi
lently, the input SNR. Indeed, for a small signal and nois
is easy to prove that the output SNR of any nonlinear sys
is bounded by the output SNR of the linear filter~or input
SNR!.

On the other hand, the output SNR of a nonlinear fil
may exceed its input SNR under special circumstances.
bandpass limiter is a circuit which illustrates this effect.
consists of a bandpass filter followed by a threshold~or ‘‘in-
finite limiter’’ ! circuit. The bandpass filter removes all si
nals outside a narrow band of interest, and the thresh
circuit converts the analog output of the bandpass filter t
two-level output (1V if the bandpass filter output is pos
tive, 2V if negative!. This nonlinear device improves th
SNR of a signal by tacitly assuming that the signal pow
exceeds the noise power. When the assumption holds
SNR increases by several dB. However, when the assu
tion fails, the SNR decreases slightly. The fact that there
positive SNR gain only above a certain threshold input S
~the ‘‘threshold effect’’! is a universal phenomenon gener
to all nonlinear processors.24

We conclude this section with a few sweeping remar
We have considered in detail locally, linearly coupl
damped nonlinear oscillators subject to local noise, as w
as globally, nonlinearly coupled model neurons subject
global noise. We have not found great differences attrib
able to the particular choice of nonlinearity, nor global
local coupling. However, linear vs nonlinear coupling a
global vs local noise can make a great deal of difference
certain cases. For example, linear coupling has little to
effect on identical oscillators subject to global noise; n
does the summing of outputs. However, as remarked ab
nonlinear coupling can completely remove oscillator nonl
earities for some configurations of identical oscillators s
ject to global noise.

The issue of local vs global noise deserves further co
al
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ment since it determines whether the noise at different
ments of the array is correlated or uncorrelated. If the no
comes from sources internal to the system, then using m
elements which are coupled and/or have summed out
will enhance output SNR, compared to using only one e
ment. In the case of summed outputs, and to some exte
the case of coupling, this is because signal components
coherently, while uncorrelated noise components add in
herently. In the external-noise case, one does not have
effect to exploit, but, somewhat surprisingly, coupling c
still enhance output SNR.7 The external/internal noise dis
tinction also affects how we can measure SNR enhancem
If we are considering the external noise situation, then th
is a well-defined input signal plus noise. We can compare
input and output SNR to determine if the system provid
any gain in SNR. We can also look at output SNR as
function of N, the number of elements in our array. F
internal noise, the input SNR is infinite, because the sig
comes into the system with no noise added to it. Howev
we can still look at output SNR enhancement as a funct
of N.

VII. CONCLUSION

Stochastic Resonance, when carefully invoked, can
hance the response of ana priori nonlinear detector. This
enhancement appears to occur for a variety of combinat
~linear/nonlinear, local/global, etc.! of coupling and noise
scenarios. In this work, we have considered only cyclic a
sub-threshold~i.e., there is no deterministic switching! sig-
nals; for supra-threshold signals, a variety of other nonlin
effects come into play, and the output SNR can actually
ceed that at the input. The SR scenario envisions the no
assistedinterwell or hopping motion as the primary carrier o
information through the system; intrawell motion is n
glected. The maximization of the output SNR has be
shown3,8 to be directly the result of spatio-temporal synchr
nization of the array dynamics to the external signal. T
synchronization, which leads to scaling relationships8 that
can be addressed in the framework of a continuumf4 field
theory of kink–antikink nucleation,5 has been demonstrate
in the experiments4 that are reviewed in this work.

It should be emphasized that the occurrence of AESR
such a diversity of systems~coupled map lattice,f4 model,
coupled resonators, coupled ODE’s! gives strong evidence
for its universal nature. Unlike the elements in the numeri
simulations, the resonators in the experimental setup were
from identical. Crucial parameters, such as energy barrier
local noise intensities varied significantly. The relative
strong coupling serves to smooth out these inhomogene
and approach the continuum limit. The absence of coup
induced long-range spatial correlations in the coupled m
lattice and its resulting limitations for SR enhanceme
agrees well with the proposed mechanism of kink–antik
nucleation.5

Beyond the tantalizing implications of this collective b
havior in biological neural networks and bioengineering
ceptors, for example, the practical problem of exploiting S
and AESR in signal detection scenarios has recently attra
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a fair amount of attention; some aspects of this problem h
been reviewed~Sec. VI!. The starting point is the precep
that even when the detector is nonlinear, a knowledge of
signal detection statistics and their behavior under the c
ditions of SR is essential before one can consider a prac
implementation. We have demonstrated that there exist
optimal noise value at which the detection probability~for a
fixed false alarm rate! is a maximum. This idea is bein
applied to sophisticated signal detection scenarios25 involv-
ing SR in real-world detection systems, wherein the num
of adjustable parameters is increased over simple or ‘‘cla
cal’’ SR applications. In these systems, an improper cho
of parameters~or operating points! can easily degrade th
signal detection properties; this lends credence to the ma
that thequantitativedynamics of a particular nonlinear de
vice have to be fully understood before one can hope
apply it to real-world situations, despite the fact that t
qualitative behavior of nonlinear dynamic systems may
generically similar.
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22M. Löcher, D. Cigna, and E. R. Hunt, Phys. Rev. Lett.80, 5212~1998!.
23M. Inchiosa and A. Bulsara, Phys. Rev. E53, R2021~1996!.
24H. van Trees,Detection, Estimation and Modulation Theory~Wiley, New

York, 1978!.
25M. Inchiosa and A. Bulsara, Phys. Rev. E58, 115 ~1998!.


