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dc signal detection via dynamical asymmetry in a nonlinear device

M. E. Inchiosa* and A. R. Bulsara†

Space and Naval Warfare Systems Center San Diego, Code D364, San Diego, California 92152-6171
~Received 8 January 1998!

We study the detection of very small changes in a ‘‘target’’ dc signal, using a nonlinear dynamic sensor that
is ac biased with aknownsinusoidal signal. The sensor’s nonlinear response generates harmonics at the odd
multiples of the ac bias frequencyv in the absence of the dc signal, and atall multiples ofv in the presence
of the dc signal, with the spectral amplitudes of these harmonics being very sensitive to the dc signal ampli-
tude. For weak ac bias amplitude we use perturbation theory to calculate signal and noise powers at dc, at the
fundamental~at frequencyv), and at the first harmonic~at frequency 2v), from which we can predict the
signal detection statistics. We compare these results with numerical simulations for both weak and strong ac
bias amplitudes, as well as with results for an optimal detector. As our example nonlinear dynamic sensor, we
use an rf superconducting quantum interference device loop.@S1063-651X~98!13806-0#

PACS number~s!: 05.40.1j, 02.50.Ey, 85.25.Dq
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I. INTRODUCTION

Periodically modulated stochastic systems have rece
considerable attention recently@1#; these systems, which ca
generally be described by the ‘‘particle-in-potential’’ par
digm, dx/dt 52]U(x)/]x 1S(t)1N(t), exhibit a richness
of noise-mediated resonance behavior in the spectral m
sures~e.g., the output signal-to-noise ratio, SNR! of the re-
sponse. Here,S(t) and N(t) denote a deterministic signa
~usually taken to be time periodic! and noise~usually taken
to be Gaussian!. If the potential energy functionU(x) is
even~often bistable!, then the output power spectral dens
~PSD! consists of a Lorentzian-like noise background w
peaks appearing at theodd multiples of the signal frequenc
v. However, real-world manifestations of these systems
often asymmetric, with the dynamics containing even a
odd functions of the state variable. The simplest route
asymmetry in the above dynamics is to incorporate a sm
dc termx0 into the signalS(t) or, equivalently, a termxx0
into U(x). The output PSD of asymmetric systems conta
all the harmonics of the periodic signal frequency; hence,
appearance and magnitudes of the even multiples ofv could
be taken as quantifying measures of the asymme
producing signal.

Asymmetric dynamic systems of the above form ha
been studied@2# with Gaussian white noise. The spectr
amplitudes of the harmonics of the periodic signal, in t
output PSD, pass through maxima as a function of no
variance. In recent work@3#, we presented a systematic de
vation of the resonant behavior of the spectral amplitude
the harmonics atkv (k51,2,3,. . . ) in a generic nonlinear
dynamical system subject to a weak symmetry-breaking
signal in addition to a known cyclic signal. The resona
behavior was found to depend on a new control parame
the degree of asymmetry, and was interpreted at all ordek,
via a matching of deterministic~the frequencykv) and sto-
chastic~the interstate hopping rate in the absence of the
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nal! time scales~the hopping rate depends critically on th
asymmetry as well as the spectral characteristics of
noise! in the same manner as the ‘‘standard’’ stochastic re
nance@1,4#. Calculations carried out on a specific nonline
dynamic system, the rf superconducting quantum inter
ence device~SQUID! loop subject to Gaussiancorrelated
noise, demonstrated a remarkable agreement with nume
simulations within the framework of the perturbation-theor
based approximations inherent in the theory.

To determine whether the SR effect has signal proces
applications, however, we cannot rely on SNR alone. F
example, a nonlinear signal processor may output a sig
that has infinite SNR but is useless because it has no co
lation with the input signal. For signal estimation, releva
measures are mean square error or Bayesian tests@5#. For
signal detection, one must consider detection statistics: p
ability of detection and probability of false alarm. Probabili
of detection is the probability that the system will report th
a signal is present when in fact a signalis present. Probabil-
ity of false alarm is the probability that the system will repo
that a signal is present when in fact a signal isnot present.
Such statistics are summarized in a plot of detection pr
ability versus false alarm probability known as the receiv
operating characteristic~ROC!. In recent publications@6,7#,
we computed the ROCs for a single bistable element an
globally coupled array of such elements. The detection pr
ability ~for a fixed false-alarm rate! was found to follow the
behavior of the output SNR: it displayed a maximum as
function of noise, and the coupling significantly enhanc
signal detection performance over that obtained for a sin
element.

While SR does lead to an enhancement in the signal
tection performance of ana priori nonlinear sensor, it gen
erally cannot provide an output SNR in excess of the in
SNR, when the input signal is a known, subthreshold sig
in Gaussian noise. For this case, a nonlinear device
never outperform the~ideal! matched filter; however, in
practice, such an ideal~linear! filter is often difficult to
implement. One such example is afforded by the SQU
which, despite being the most sensitive detector of magn
fields, is severely limited by sensor-environmental noise
115 © 1998 The American Physical Society
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practical applications wherein it is operated in a feedback
‘‘flux-locked’’ configuration @8#. SR has already been show
to occur in a single-junction~rf! SQUID @9#; hence, it offers
the possibility of a constructive utilization of that portion
the noise that cannot be canceled by existing techniq
Recent theoretical studies@3# and experiments@10# indicate
that the technique outlined above may be applicable to m
nonlinear sensors that must detect weak dc signals in
presence of significant amounts of low frequency noise.
applying a known bias signal with carefully selected fre
quencyv, the detection may be shifted to a more accepta
part of the frequency spectrum. It is important to note t
the technique should work best when the signals~the target
and cyclic bias! are uncorrelated with the noise backgroun
in practical signal detection scenarios, this is frequently
case. Then, in a detector that has ana priori symmetric po-
tential, the appearance of the even multiples ofv in the
output PSD, together with the change in their spectral am
tudes in the presence of the symmetry-breaking sig
~which may be dc or monochromatic ac, in which case o
looks at the properties of combination tones in the out
PSD!, may be used to detect or estimate the weak ta
signal. In remote sensing applications, one often knowa
priori the spectral characteristics of the background noise
well as the sensor noise~in the absence of the signal!; hence,
one is afforded the possibility of optimizing the sensor p
rameters ~specifically, the potential energy function! to
achieve the best possible detection.

In this paper, we present a systematic computation of
signal detection statistics for the single-junction~rf! SQUID
~which we take to be our example nonlinear dynamic devi!
subject to a weak dc target signal in the presence of amb
noise and a known cyclic~having frequencyv) bias signal.
We consider the response at the frequencies 0,v,2v only,
building on the results of our earlier publications@3#; how-
ever, in addition to the output signal power we must n
compute the noise power as well. This calculation is carr
out in Sec. III. We begin by briefly describing the rf SQUI
loop and summarizing our earlier results@3#.

II. THE rf SQUID LOOP

The standard rf SQUID loop is a superconducting lo
into which a single Josephson junction has been inserted@8#.
The dynamics are multistable with the magnetic flux throu
the superconducting loop being quantized in units of the fl
quantumF0[h/2e. In the presence of the junction, the ma
netic flux F through the loop, in response to an appli
time-dependent magnetic fluxFe , evolves according to the
dynamics@8#,

S LC
d2

dt2
1tL

d

dt
11D F~ t !

F0
1

bs

2p
sin

2pF~ t !

F0
5

Fe~ t !

F0
,

~1!

whereL andC are the loop inductance and capacitance,tL
[L/RJ is the SQUID time constant (RJ being the normal
state resistance of the junction!, and the parameterbs
[2pLi c /F0 ( i c is the junction critical current! controls the
hysteretic behavior of the device. In most practical appli
tions, the SQUID loop is shunted by a low resistance in or
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to remove hysteresis in the voltage-current characteristic
the junction@8#; this process effectively renders the link c
pacitanceC extremely small so that the inertial term in E
~1! may be neglected. Transforming to the normalized st
variablex(t)[F(t)/F0, we may write the dynamics~1! in
the ‘‘particle-in-a-potential’’ form:

tLẋ52
]U~x!

]x
1h~ t !1y~ t ! ~2!

where the dot denotes time differentiation, and the poten
function

U~x!5
1

2
~x2x0!22

bs

4p2
cos 2px ~3!

is multistable whenbs.bsc , wherebsc51 for x050. This
multistability translates into a hysteretic, or multivalued,F
versus Fe transfer characteristic. We have expressed
~normalized! external fluxFe /F0 as the sum of three terms
a symmetry-breaking dc termx0 @which we incorporate into
U(x)], an ac termh(t)5A sin(vt1u) with u being a~often
assumed random! phase factor, and a noise termy(t). Typi-
cally the time constanttL'10212 s, so that with the excep
tion of the ~internal! thermal noise, which is assumed neg
gible for the purposes of this paper, any externally appl
noise will usually have a bandwidth far smaller than t
SQUID bandwidthtL

21. This is even more the case in ex
perimental setups wherein a resistive shunt must often
placed across the SQUID to filter out high-frequency noi
The LR circuit formed by the shunt resistance and the lo
inductance results in a low-pass filter that decreases the i
noise bandwidth even further@9#. Hence we must takey(t)
to be zero-mean Gaussianexponentially correlatednoise; it
may be modeled via a white-noise-driven Ornste
Uhlenbeck~O-U! process@11#:

ẏ52tc
21y1sF~ t !, ~4!

whereF(t) is zero-mean ‘‘white’’ noise with autocorrelatio
^F(t)F(t1s)& t5d(s) and tc is the correlation time of the
‘‘colored’’ noise y(t). Then, one easily verifies@11# thaty(t)
has zero mean and autocorrelation function^y(t)y(t1s)& t
5^y2&e2usu/tc, whence the ‘‘white’’ limit, corresponding to
delta-correlated noise, is realized whentc→0. The colored
noise has variancesy

2[^y2&5s2tc/2 @we reiterate thaty(t)
has units of normalized magnetic flux#.

It is convenient to prebias the SQUID loop so that t
potential ~3!, for the multistable casebs.bsc , is centrally
bistable with possible outlying metastable states. This is
complished@9# by incorporating a dc biasm/2 (m odd! in the
potential: we replacex0 by x01m/2. Assuming the signa
and noise to be very slow compared to the well-relaxat
time ~the standard adiabatic assumption!, we may incorpo-
rate the signalh(t) and the noisey(t) into the potential
function U(x) as well, writing Eq. ~2! in the form tLẋ
52]Ue(x)/]x where the potential functionUe is now given
by
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Ue„x~ t !…5
1

2S x2x02
m

2
2y~ t !2h~ t ! D 2

2
bs

4p2
cos 2px.

~5!

In this work, we consider the signal detection perfo
mance of the SQUID in its multistable, or dissipative, mo
(bs.bsc). In this case, one treats the SQUID as a ne
discrete hysteretic two-state system, with a transition r
between states; the rate can be readily calculated for the
of ‘‘strongly’’ ~compared to the SQUID time constant! col-
ored noise that is germane to the device:tc@tL . This pro-
cedure will be summarized in the following section, whe
we extend the calculations of@3# to compute the noise com
ponent in the output PSD of the device. We note that
recent work@12#, we have considered the response~quanti-
fied by the output SNR at the fundamental of the kno
cyclic bias signal! of the rf SQUID operated in its nonhys
teretic, or dispersive mode (bs<bsc), and subjected to a
target dc signal. For this monostable potential case, the t
state approximation and the transition rate approach
longer apply. Instead, the output power spectral den
~PSD! may be computed directly from an input-output tran
fer characteristic. Again, we obtain very good agreem
with experiment.

It is important to note that the ‘‘adiabatic assumption
whereby we assume the SQUID to be a ‘‘static nonlinearit
subject to a signal of frequency far smaller than the SQU
bandwidth tL

21 , is critical to our ability to carry out the
current as well as earlier@3,12# calculations. The assumptio
holds as long asf (5v/2p)!tL

21 ,tc
21 . In addition, we have

made the above-mentioned assumption of strongly correl
external noise having correlation timetc@tL ; the sensor’s
thermal noise~which is, in fact, broadband@8#! is assumed to
be far smaller than the ambient or ‘‘source’’ noise, and w
be neglected throughout. To summarize, we requiref !tc

21

!tL
21 . We also assume that the signal and noise amplitu

are sufficiently low ~the assumption of ‘‘no deterministi
switching’’ a cornerstone of the current and previous@3# cal-
culations! so that the SQUID may, in fact, be regarded a
centrally bistable system, in which the noise drives the
namics between the two central~stable! minima of the po-
tential, with excursions to the outlying metastable states
curring very seldom. Finally we note that ou
characterization of the SQUID as a device that usually
sides in its steady state~this is predicated by the small tim
constanttL) implies that we may reduce the problem of t
SQUID response to that of tracking the dynamics of
noise as it passes through the SQUID loop in the presenc
the asymmetrizing dc flux and a slowly varying~known!
cyclic signal that modulates or ‘‘rocks’’ the potential. Tra
sition ratesW12,W21 ~these were computed in@3# and will be
discussed again below! characterize the ‘‘hopping’’ betwee
the allowed SQUID states of the noise variable, and o
requires the adiabatic conditionf !W12,W21 for our charac-
terization of the SQUID as a static nonlinearity with dichot
mous Markovian dynamics to be valid. This condition set
lower limit on the values of noise variancesy

2 that satisfy our
theoretical assumptions.
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III. OUTPUT POWER SPECTRUM; SIGNAL POWER
AND NOISE POWER

In @3# we calculated, for an asymmetric potential, the
sponse power at the fundamentalv and first harmonic 2v of
the cyclic drive frequency. In this paper we first derive t
noise power spectrum by adapting the approach of@13# to
apply to an asymmetric potential. To accomplish this,
extend@13# to second order in perturbation theory. For t
signal power atv and 2v, we recover the results of@3#. Note
that terms for the signal power at twice the driving frequen
first appear in second order perturbation theory. Howev
for the noise power, first order perturbation theory is su
cient ~for sufficiently weak driving!. We can use the secon
order terms to test whether we have exceeded the limit
the first order result.

We model the SQUID as a two-state system with st
probabilitiesp1,2(t) that evolve via the master equations@3#

ṗ15W21p22W12p1 ,
~6!

ṗ25W12p12W21p2 ,

where p11p251 andWik denotes the transition rate from
statei to statek. The master equations~6! have the solution
@13#

p1~ t !5g21~ t !Fp1~ t0!g~ t0!1E
t0

t

W21~ t8!g~ t8!dt8G ,
~7!

g~ t !5expH E t

@W12~ t8!1W21~ t8!#dt8J .

We can integrate Eq.~7! if we carry out a perturbation-
theoretic expansion of the transition rates to second orde
an expansion parameterA8([A/A2sy

2)!1:

W12'a01a1h8~ t !1a2h82~ t !,
~8!

W21'b01b1h8~ t !1b2h82~ t !,

whereh8(t)[A8sin(vt1u). The expansion coefficients ar
obtained through a straightforward Taylor expansion of
transition rates, and they may be found in@3#.

Using the transition rate expansion~8!, we can integrate
~7! to obtain the probability that the particle is in the ‘‘1
state at timet given that it was in thes0 state at timet0
~wheres0P$1,2%). Collecting terms in powers of the expan
sion parameterA8, we obtain

p1~ tus0 ,t0!5p101A8p111A82p121O~A83!, ~9!

where the coefficients are

p105
a2ā

2a
1e2a~ t2t0!

~2ds0121!a1ā

2a
, ~10!
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p115c1a1cos~vt !1c1b1sin~vt !1e2a~ t2t0!@b2sin~vt !1c3a3cos~vt0!1c3b3sin~vt0!#, ~11!

and

p125C11c4a4cos~2vt !1c4b4sin~2vt !1e2a~ t2t0!$C21C3~ t2t0!1c5sin~vt !@a5cos~vt0!1b5sin~vt0!#1c6a6cos~2vt !

1c6b6sin~2vt !1c7a7cos~2vt0!1c7b7sin~2vt0!%. ~12!

The a’s, b’s, c’s, and C’s depend only on the Kroneckerd function ds01, the ac bias frequencyv, and the expansion
coefficients in Eq.~8!; we list their definitions in the Appendix. For convenience, we have also switched to the sum
difference variablesa[a01b0, b[a11b1, g[a21b2, ā[a02b0, b̄[a12b1, andḡ[a22b2.

In our two-state approximation, the probability density function of the SQUID output is

P~x,t !'p1~ t !d~x2x10!1p2~ t !d~x2x20!, ~13!

wherex10 and x20 are the locations of the minima of the unperturbed potential energy~3!. Therefore, we can compute th
autocorrelation̂ x(t)x(t1t)us0 ,t0& from p1(tus0 ,t0) using

^x~ t !x~ t1t!us0 ,t0&5@x10p1~ t !1x20p2~ t !#@x10p1~ t1utu!1x20p2~ t1utu!#. ~14!

Following @13#, we average the autocorrelation over one cycle of the periodic ac bias flux and then perform a
transform to obtain the output power spectrum. To second order in perturbation theory, the power spectrum co
delta-function peaks atV50, v, and 2v, superimposed on a smooth noise background:

S~V!5M0
2d~V!1

M1
2

2
d~V2v!1

M2
2

2
d~V22v!1N~V!. ~15!

M1 andM2 were calculated in@3#, and

M05A2p c̄1A2pc
uaā~a21v2!1~A82/2!@2ab~ab̄2āb!1~aḡ2āg!~a21v2!#u

a2~a21v2!
, ~16!

wherec[(x102x20)/2 andc̄[(x101x20)/2.
The noise term in Eq.~15! can further be written as the expansion

N~V!5N0~V!1N2~V!A821O~A84!, ~17!

where

N0~V![
2c2~a22ā2!

a~a21V2!
~18!

and

N2~V![
c2

a~a21V2!
H 2

~ab̄2āb!2

a21v2
1

2a2@~a22ā2!g12ā~aḡ2āg!#1@ā~gā2ḡa!1a~ag2āḡ !#V2

a~a21V2!

1
b@a3~ab2āb̄ !15a2ā~ab̄2āb!24a~ab2āb̄ !V21b~a22ā2!~V21v2!#

@a21~V2v!2#@a21~V1v!2#
J . ~19!
id
bl

hi

out
at-
l
tly
We have computed the term inA84 as well, but we omit it
due to its length and the fact that within the regime of val
ity of the perturbation theory expansion it adds a negligi
contribution.

The features ofS, N, andS1N will be discussed in the
following section, where we concentrate on the thrust of t
paper: the signal detection problem.
-
e

s

IV. SIGNAL DETECTION

We will concentrate on detecting a small changeDx0 in
the flux, since large flux changes can be detected with
using SQUIDs, or by using SQUIDs in conventional oper
ing modes@8#. If the noise level is too high to permit usefu
signal detection, it may be reduced by choosing a sufficien
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narrow frequency bin width, although this requires observ
the signal for a longer time before making a detection de
sion.

To maximize dc signal detection performance, one wo
like to bias the SQUID onto an operating region where
response depends sensitively on the dc signal and wher
response noise is small.

One can get a general feel for where the signal detec
performance will be optimal by looking at plots of sign
power and noise power versusx0. However, to make quan
titative predictions of the signal detection performance
can use a modified version of the approach we used in@7# to
calculate the probability of detectionPd and probability of
false alarmPf .

We perform signal detection by measuring the out
power l in a frequency bin of widthDv centered at fre-
quencyV. We then compare our ‘‘test statistic’’l to a ‘‘de-
cision threshold’’Q. If the power exceeds the threshold, w
report that the target signal is present; otherwise, we re
that it is absent.~Under certain conditions to be discuss
later, we see adrop in power when the target signal i
present. In such cases, we simply reverse the conditions
reporting the presence and absence of the target signal.!

To predict the probability of detection and probability
false alarm, we need to know the probability distributi
P( l ) of our test statisticl . CalculatingP( l ) is difficult due to
the nonlinear nature of our system. We can, however,
proximateP( l ) by the probability distribution of the powe
at the output of a bandpass filter of passband bandwidthDv
centered at frequencyV, which is fed by a sinusoidal wav
of amplitudeA2Er in white Gaussian noise having powerN
over a bandwidthDv. ~Such a bandpass filter is indeed t
optimal detector of a sinusoidal wave of unknown rando
uniformly distributed phase in white Gaussian noise@15#.!
The probability that the power at the output of the filter w
exceed a thresholdQ is Q(A2Er /N,A2Q/N) @15#, where
Marcum’sQ function is

Q~a,b![E
b

`

zexpS 2
z21a2

2 D I 0~az!dz ~20!

and I 0 is the modified Bessel function of the first kind an
order zero. Using this approximate model of our test sta
tic’s probability distribution, we obtain the following prob
abilities of detection and false alarm:

Pd5Q~A2Er1 /N1,A2Q/N1!, ~21!

Pf5Q~A2Er0 /N0,A2Q/N0!, ~22!

where the subscripts 1 and 0 refer to the hypothesesH1 and
H0 of having the dc target signalDx0 present and absen
respectively.Er is the mean response signal power in a f
quency bin of widthDv centered at the detector’s cent
frequencyV50, v, or 2v, and equals total signal powe
minus noise power.~Note, however, that for practical signa
detection the noise power is typically much less than
signal power, making the difference between signal pow
and total power negligible.! We can calculate the respons
noise powerN in the test statistic’s frequency bin from th
noise terms in the analytical expression for the PSD. In
g
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case of simulations, we estimate the noise power by ave
ing the power in the frequency bins 4–8Dv above and below
~unlessV50! the test statistic’s frequency bin~which is cen-
tered at frequencyV).

This model represents an improvement over the model
used in@7#. In the present case we use the signal power
noise power, rather than just their ratio. This allows us
account for additional nonlinear effects and more comp
cated detection scenarios. In the previous model@7#, the out-
put noise power was taken to be the same under both hyp
esesH0 andH1, and the output signal power was taken to
nonzero only under hypothesisH1. The present model take
into account the fact that the nonlinear response yield
different output noise power under the two hypothesesH0
and H1. The present model also allows for nonzero outp
signal power under hypothesesH1 and H0.

For comparison we will also calculate the optimal dete
tion of a dc signalDx0 in exponentially correlated Gaussia
noisey(t) as defined via Eq.~4!. We observe the receive
signal r (t) over an observation interval@0,T#. In general,
increasing the observation timeT improves the detection
performance, but it also increases the amount of time
must elapse before a detection decision is made.

We can map our problem onto a more general bin
hypothesis-testing problem worked out in@14#: in hypothesis
H1, a signals1(t) was present during the observation inte
val, and in hypothesisH0, a signals0(t) was present.

H1 : r ~ t !5s1~ t !1n~ t !,
~23!

H0 : r ~ t !5s0~ t !1n~ t !,

where 0<t<T andn(t) is zero mean Gaussian noise, whic
may be nonstationary. In our case,

s1~ t !5Dx0 , s0~ t !50. ~24!

The optimal detection statistic is

G5ReE
0

T

h1* ~ t !F r ~ t !2
1

2
s1~ t !Gdt

2ReE
0

T

h0* ~ t !F r ~ t !2
1

2
s0~ t !Gdt. ~25!

The filter functions$hi(t)% are solutions of

E
0

T

R~ t,t8!hi~ t8!dt85si~ t !, ~26!

whereR(t,t8) is the covariance of the noisen(t). If n(t) is
stationary, then we can replaceR(t,t8) by R(t2t8). If the
stationary noise has a power spectrum that is a rational f
tion, then a method exists to find the$hi(t)% that solve Eq.
~26!.

We need the probability density of the test statisticG to
compute the detector performance. SinceG is obtained from
a linear operation on a Gaussian signal, it too is Gauss
and its probability density is fully described by its mean a
variance. The expectation valuesE1(G) and E0(G) under
hypothesesH1 andH0, respectively, are
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E1~G!52E0~G!

5
1

2E0

T

@h1~ t !2h0~ t !#* @s1~ t !2s0~ t !#dt, ~27!

and the variance ofG is

sG
2 52uE1~G!u. ~28!

Setting the noise covariance in Eq.~26! equal to the co-
variance functionRy(t) of our stationary Gaussian nois
y(t), the filter functions$hi(t)% are given by@14#

hi~ t !5
tc

2sy
2 $2si9~ t !1si~ t !/tc

21@2si8~0!1si~0!/tc#d~ t !

1@si8~T!1si~T!/tc#d~ t2T!%, 0<t<T. ~29!

Substituting Eqs.~24! and ~29! into Eq. ~25! and using
Eqs.~27! and~28! gives the optimal detector for our particu
lar signals and noise,

G5
Dx0

2sy
2F 1

tc
E

0

T

r ~ t !dt1r ~0!1r ~T!G2
1

2
sG

2 , ~30!

and its variance

sG
2 5

Dx0
2

2sy
2 ~21T/tc!. ~31!

SinceT@tc , we can make the approximations

G'
Dx0

2sy
2tc

E
0

T

r ~ t !dt2
1

2
sG

2 , ~32!

and

sG
2 '

Dx0
2T

2sy
2tc

. ~33!

From Eq. ~32! we see that we can optimally detect the
signal by simply integrating the received signal over the
servation interval and comparing this integrated value t
decision thresholdGt .

We can obtain the optimal detector’s probability of dete
tion for a given thresholdGt by integrating the~Gaussian!
probability density function ofG from Gt to infinity under
the H1 hypothesis~recall that the expectation value ofG
depends on the hypothesis!, giving us a result in terms
of the complementary error function, erfc(z)[1
2 (2/Ap) *0

ze2t2dt,

Pd
opt5

1

2
erfcS 1

A2sG
2 FGt2

sG
2

2 G D . ~34!

We can likewise obtain the probability of false alarm
performing the same integration under theH0 hypothesis,
giving
-
a

-

Pf
opt5

1

2
erfcS 1

A2sG
2 FGt1

sG
2

2 G D . ~35!

Using these formulas we can easily study the depende
of the detection statisticsPd

opt and Pf
opt on the noise param

eterssy
2 andtc , the target signal strengthDx0, and the ob-

servation timeT. For example, suppose we want to dete
mine the dependence ofPd

opt on one of these parameter
keepingPf

opt fixed. Inverting Eq.~35!, solving for the deci-
sion thresholdGt , and inserting the result into Eq.~34!
yields

Pd
opt5

1

2
erfc@erfc21~2Pf

opt!2AsG
2 /2#, ~36!

where erfc21 is the inverse function of erfc. Now, using ou
equation~33! for sG

2 , we can plot the dependence ofPd
opt on

sy
2 , tc , Dx0, or T.
In many cases the SQUID signal detection performa

will show a parameter dependence closely mirroring the
timal detector. For example, we would expect both detec
to have a similar observation time dependence provideT
@2p/v.

V. NUMERICAL RESULTS OF THEORY
AND SIMULATIONS

We will consider three cases of ac bias signal amplitu
A50, A50.1, andA50.56. In the first two cases we ca
estimate the response power spectrum analytically. In
third case the ac bias signal is just below the ‘‘determinis
switching threshold,’’ i.e., the level of bias that would mod
late the potential wells so much that during each cycle
modulation the left well and right well would alternate
disappear. In this case we rely on simulations since our p
turbation theory assumptions do not hold.

We first consider the caseA50.1. Figure 1 shows the
output power at frequenciesV50, v, and 2v. Note that
‘‘ S1N’’ simply refers to the total power in the output powe
spectrum over a frequency range of widthDv centered at
frequencyV, and ‘‘N’’ refers to the contribution to the tota
power in this frequency range due to noise terms only.
have plotted the results of binary-filtered simulations bes
the theoretical predictions. The binary filter outputs a fix
positive or negative value depending on whether
SQUID’s state point lies in the right or left potential wel
respectively. Since the theory uses a two-state approxi
tion, we expect it to give better agreement with the bina
filtered result. In fact, the theory shows excellent agreem
with the simulations for this value ofA.

Figure 2 shows the output powers forA50. ~Note that for
A50 the total power equals the noise power except atV
50, where there is a difference due to the nonzero dc val!
In the A50 case, we check for the effects of the nonpert
bative approximations made in the theory. These include
two-state approximation and the adiabatic approximati
v21@tc@tL @15#. We can see from the figure that the no
perturbative approximations cause very little error in pred
ing the binary-filtered output powers.

Figure 3 shows the unfiltered output powers and the
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FIG. 1. Output power~in dB! at frequenciesV50 ~top row!, v ~middle row!, and 2v ~bottom row!, computed as a function of dc bia
x0 in normalized units~see text! and noise variancesy

2 ~in dB!. Columns 1 and 2: total power computed via binary-filtered simulations
theory, respectively; column 3 and 4: noise power computed analogously. Numbers inside each frame denote the maximum and
powers~in dB!. Parameter values:A50.1, tc50.01,T5161 s,v510, Dv5v/256,bs55.
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tection probabilityPd for a fixed false alarm probability o
Pf50.1. ForV5v,2v, the maximumPd occurs close to the
noise variance that maximizes the output power. Howe
the maximizing value of dc fluxx0 differs between the out
put power andPd plots, since the rate of change of the outp
power with respect to the dc signal is zero at the maxim
itself, and it is the variation of the output power withx0 that
makes detection possible. Note that forV5v the output
power monotonically decreases as we increasex0 from 0 to
0.5. Therefore, throughout this range ofx0’s we can always
do detection by looking for a drop in output power wi
increasingx0. However, forV52v, the rate of change o
the output power withx0 can be positive or negative. There
fore, in thePd plots for V52v we plot the maximum de-
tection probability using either a ‘‘positive slope’’ or
‘‘negative slope’’ detector.

Each contour plot results from simulating the system
208 different (x0 ,sy

2) points. At each of the points we ob
tained thePd ‘‘sim.’’ results by running 2048 numerica
simulations each of the SQUID detector response with
without the dc target signalDx0 present. Each simulation
involves generating long input and output time ser
~262 144 samples! and computing fast Fourier transform
Due to the high computing demands, we ran our simulati
in parallel using 128 processing elements of a Cray T
supercomputer.

The contour plots labeledPd ‘‘mixed’’ show predictions
of Pd generated by employing a mixture of simulation a
theory. First the system was simulated to obtain values
r,

t

t

d

s

s
E

of

output signal power and noise power. Then these val
were used in Eqs.~21! and ~22! to obtain predictions of the
detection probabilityPd for a fixed false alarm probability o
Pf50.1. We could have dispensed with the simulation a
used our theoretical expressions for the output signal po
and noise power; however, the mixed approach allows u
isolate errors arising from the approximations used in
output power theory and the signal detection theory.

In Fig. 3 we showed the detection probabilityPd only for
a fixed false alarm probabilityPf50.1. Figure 4 shows
curves of detection probabilityPd versusfalse alarm prob-
ability Pf , known as ‘‘receiver operating characteristics
~ROCs!. Different points along the ROCs correspond to d
ferent values of the decision thresholdQ. We show the re-
sults using a detector measuring total SQUID output pow
at frequencyV52v, for the parameter valuesx050.2, sy

2

5213.33 dB, which correspond to the maximum detect
performance at 2v. We find good agreement among the r
sults obtained by simulation~solid curve!, the mixture of
simulation and theory discussed above~dashed curve!, and
the purely theoretical prediction~dotted curve!.

Now we return to the case of zero ac bias amplitudeA
50). Even in the absence of an ac bias flux we can s
detect the dc signalDx0 by its effect on the system’s re
sponse to the input noise. We show the unfiltered out
power and detection probability for this case in Fig. 5. No
that the maximum detection probabilities obtained forV
5v,2v are lower than for the caseA50.1.

In Fig. 6 we plot the output powers and detection pro
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FIG. 2. Same as Fig. 1, withA50.
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ability for thehighly nonlinear caseA50.56, as obtained by
numerical simulation. Compared to the caseA50.1, the is-
land of high output power in the first harmonic respon
(V52v) has become stretched to include lower input no
values. The maximum detection probability no longer occ
at the input noise variance that maximizes the output pow
Also, the value of dc fluxx0 maximizing signal detection a
V52v occurs for x0 close to zero, in contrast to theA
50.1 case.

Consider now the effect of changingtc , the colored noise
correlation time. Comparing Figs. 3 and 7, we see that
output power maxima atV5v,2v shift to slightly smaller
values of input noise variance as we decreasetc from 0.01 to
0.0005~towards the limiting case of ‘‘white’’ noise!. Note
that the detection probabilities increase significantly. This
consistent with previous work@16# on the effects of colored
noise on the output PSD and the SNR atV5v; ‘‘whiten-
ing’’ the noise~i.e., decreasing the correlation timetc) leads
to enhancement of the output SNR. Exceptions to this beh
ior do occur@17#; however, we do not discuss them here.

As we have noted earlier, optimal detection of the
signal Dx0 uses an ideal linear sensor to average the in
signal over an observation interval and compares that a
age to a threshold. Figure 8 compares the optimal detec
performance~solid curve!, calculated using Eq.~36!, with
the SQUID signal detection performance as measured
numerical simulation. We have plotted the detection pr
ability Pd for a fixed false alarm probability ofPf50.1,
maximized over the dc biasx0. The SQUID’s ac bias flux
amplitude isA50.1. Using a detector measuring total outp
power at frequencyV50 ~diamonds!, the SQUID detection
performance matches the optimal detector. At frequencyV
e
e
s
r.

e

s

v-

c
ut
r-

r’s

ia
-

t

5v ~stars!, the SQUID detection probability comes withi
4% of the optimal detector for certain values of the no
variance. AtV52v ~boxes!, however, the SQUID perfor-
mance suffers. Because the ac bias flux amplitude is w
below the deterministic switching threshold, the SQUID
response is only weakly nonlinear, and not much powe
generated at twice the ac bias frequency. Therefore, we
low signal detection performance using measurement at
frequency.

To improve the 2v signal detection performance, we in
creased the ac bias flux amplitude toA50.56, which is just
below the deterministic switching threshold. This improv
performance so much that we were also able to reduce
observation time fromT5161 to T520.1 sec and still get
significant detection~Fig. 9!. Comparing Figs. 8 and 9, we
see that decreasing the observation time decreased the
mal detector’s performance. Note, however, theincreasein
detection performance using the SQUID’s output atV52v
~boxes!. Even though the detection task has been made m
more difficult by shortening the observation time, using
higher ac bias flux amplitude has more than compensated
fact, the performance atV52v now exceedsthat atV5v
~stars!. Although the detection performance atV50 exceeds
that atV5v,2v, in practice it may be advantageous to d
tect at the higher frequencies due to the presence in the m
surement system of additional noise sources having la
amounts of low frequency energy, e.g., 1/f noise@18#.

When applying our theory, we have stayed within t
limits of validity of the perturbation approach embodied
our expansion of the transition rates in a power series in
parameterA85A/A2sy

2. We have extended the computatio
of the noise powerN(V) to O(A84) and verified~not shown!
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FIG. 3. Output power~in dB! and detection probabilityPd at frequenciesV50 ~top row!, v ~middle row!, and 2v ~bottom row!, plotted
as a function of dc biasx0 in normalized units~see text! and noise variancesy

2 ~in dB!. Columns 1 and 2: total power and noise pow
respectively, computed via unfiltered simulations; column 3 and 4: detection probabilityPd ~at a fixed false alarm probability ofPf

50.1), computed via direct simulations and via a mixture of simulation and theory~see text!, respectively. Numbers inside each fram
denote the maximum and minimum powers~in dB!, and the maximum and minimum probabilities.Dx050.0333. Other parameter value
same as Fig. 1.
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that the fourth-order term makes a negligible contribution
the noise power within the regime of validity of the pertu
bation expansion. Note, however, that for verysmall noise
variances with the subthreshold signal strengths consid
here, the perturbation theory breaks down; in fact, this
rameter range corresponds to the strongly nonlinear reg
wherein interesting phenomena~e.g., the appearance of dip
in the output PSD! have been observed@19#.

We conclude this section by summarizing the parame
ranges investigated. Starting withA50.1, tc50.01, andT
520.1 s ~not shown!, we found that signal detection atV
5v, 2v was quite poor. We increased the bias amplitude
A50.56 ~just below the deterministic switching threshol!
and obtained very good detection. It is important to reiter
that in practical scenarios, the parametersA, v, and T,
would typically be under our control, whereasDx0 , tc , and
sy

2 would be imposed by the conditions of the experiment
application. To boost detection without approaching the
terministic switching threshold and thereby abandoning p
turbation theory, we also tried increasing the observat
time to T5161 s, while keepingA50.1 andtc50.01; this
yielded meaningful detection atV5v,2v. Realizing that the
quality of detection obtainable via the optimal detector
creases with decreasingtc @see~33!#, we were also able to
improve signal detection considerably over the base cas
reducing the noise correlation time totc50.0005, while
keepingA50.1 andT520.1 sec. The nonperturbative a
o

ed
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e

r

o

e

r
-

r-
n
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by

proximations were studied by settingA50, usingtc50.01
andT5161 s. We also note that the cyclic bias frequencyv
should be carefully selected to stay within the framework
the adiabatic approximation that is central to the theoret
calculations of this work.

FIG. 4. Probability of detectionPd vs probability of false alarm
Pf , using a detector measuring total SQUID output power at f
quencyV52v. Solid curve: simulation. Dashed curve: mixture
simulation and theory~see text!. Dotted curve: purely theoretica
prediction.x050.2,sy

25213.33 dB. Other parameter values: sam
as Fig. 3.
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FIG. 5. Same as Fig. 3, withA50.

FIG. 6. Same as Fig. 3 withA50.56,Dv5v/32, andT520.1 sec.



PRE 58 125dc SIGNAL DETECTION VIA DYNAMICAL ASYMMETR Y . . .
FIG. 7. Same as Fig. 3 withtc50.0005,Dv5v/32, andT520.1 sec.
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VI. CONCLUDING REMARKS

Stochastic resonance, when carefully invoked, can
hance the response of ana priori nonlinear detector. Even
when the detector is nonlinear, however, a knowledge of
signal detection statistics and their behavior under the c
ditions of SR is essential before one can consider a prac
implementation. In our earlier publications@6,7#, we com-
puted the signal detection statistics for a different bista
dynamical device under the ‘‘classical’’ SR scenario. T
results clearly showed that there was an optimal noise v
at which the detection probability~for a fixed false alarm
rate! was maximized. However, when the number of adju
able parameters in the system is increased, the system h
be optimized in a higher dimensional space, and it is cl
@3# that there exist regimes wherein the response can be
nificantly degraded; hence, a computation of the signal
tection statistics in the space of adjustable parameters
comes critical. As in our earlier work@3#, the theoretical
results agree very well with simulations in the framework
the adiabatic and perturbation-theoretic approximations u

In this paper we have studied a nonlinear ‘‘mixing’’ o
‘‘heterodyning’’ scheme. The scheme affords a techniq
whereby weak dc~or ac—we defer consideration of this ca
to a future publication! target signals are made more dete
able by ‘‘mixing’’ them with a knownac bias signal in the
nonlinear dynamic device. While we have used the
SQUID ~in a continuation of our previous work@3#! as the
example device for calculational purposes, the results of
paper apply to a large class of devices characterized by
namics of the form~2!, which involve bi- or multistable po-
tential energy functions with adjustable asymmetry. The o
put PSD consists of signal peaks~in theory, delta functions;
n-

e
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in practice, they have a finite width! superimposed on a nois
background. The heights of the peaks~and the attendan
SNR’s! are very sensitive to even small changes in the tar
dc signal, so that one can compute detection probabilities
observing changes in the heights of well-defined determi
tic features that are alreadyabove the noise background
whereas the false alarm rate is set by the noise backgro
Clearly, this technique affords the possibility of greatly e
hanced detectability by providing a means of ‘‘moving’’ th
target signal into a more acceptable band of the output P
via a careful selection of the bias frequencyv.

Unresolved issues which may need to be addressed in
context of specific applications include the effects of cor
lations between the noise and the ac bias signal. Further

FIG. 8. Detection probabilityPd for a fixed false alarm prob-
ability of Pf50.1, maximized over dc biasx0, using a detector
measuring total output power at frequenciesV50 ~diamonds!, v
~stars!, and 2v ~boxes!, plotted as a function of noise variancesy

2

~in dB!. Solid curve:Pd for optimal linear detector. Parameter va
ues: same as Fig. 3.
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choice of bias signal amplitude and frequency predicate
minimum observation timeT for getting acceptable perfor
mance. For a given target signal and background noise~these
quantities are usually inaccessible to the experimenter!, set-
ting the amplitude of the bias signal to be just shy of t

FIG. 9. Same as Fig. 8 withA50.56, Dv5v/32, and
T520.1 s.
e

deterministic switching threshold and selecting a bias f
quency high enough so that the target data are collected
many cycles of the bias signal will yield the shortest obs
vation times for obtaining acceptable performance. In ma
practical applications one does not have the luxury of c
lecting large time series from the target, i.e.,T is small, so
that a careful selection of the bias amplitude and freque
are critical to good performance.
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APPENDIX

Here we list the definitions of the constants used in Eqs.~11! and ~12!:

C1[2
aḡ2āg

4a2
1

b~ab̄2āb!

4a~a21v2!
, C2[

ab2@~2ds0121!a1ā#1v2~aḡ2āg!

4a2v2
, C3[2

g@~2ds0121!a1ā#

4a
.

a1[a, b1[v, c1[2
ab̄2āb

2a~a21v2!
.

b2[2
b@~2ds0121!a1ā#

2av
.

a3[v~ab̄2āb!, b3[ab@~2ds0121!a1ā#1v2@~2ds0121!b1b̄#, c3[
1

2v~a21v2!
.

a4[a2@b~ab̄2āb!2a~aḡ2āg!#1v2@22b~ab̄2āb!2a~aḡ2āg!#,

b4[av@3b~ab̄2āb!22a~aḡ2āg!#22v3~aḡ2āg!,

c4[
1

4a~a21v2!~a214v2!
.

a5[2a3 , b5[2b3 , c5[
bc3

v
.

a6[b2, b6[gv, c6[2
~2ds0121!a1ā

8av2
.

a7[2ab2@~2ds0121!a1ā#22v2$2b@~2ds0121!b1b̄#2~aḡ2āg!%,
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