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Noise Enhanced Propagation
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We use noise to extend signal propagation in one- and two-dimensional arrays of two-way coupled
bistable oscillators. In a numerical model, we sinusoidally force one end of a chain of noisy oscillators
We record a signal-to-noise ratio at each oscillator. We demonstrate that moderate noise significant
extends the propagation of the sinusoidal input. Oscillators far from the input, where noise extends th
signal, exhibit a classical stochastic resonance. We obtain similar results with two-dimensional arrays
The simplicity of the model suggests the generality of the phenomenon. [S0031-9007(98)07826-0]

PACS numbers: 05.40.+ j, 02.50.–r, 87.10.+e
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In the phenomenon ofstochastic resonance(SR), a
nonzero value of noise optimizes the response of a no
linear system to a deterministic signal [1]. Coupling suc
a stochastic resonator into an array of similar resonato
enhances the effect, producing a spatiotemporal orarray
enhanced stochastic resonance(AESR) [2]. Recent stud-
ies have demonstrated that noise can support or sus
propagation in a variety of numerical and experiment
nonlinear systems. Junget al. [3] demonstrated that noise
can aid the spreading of wave fronts in a numerical mod
of an excitable medium. Kádáret al. [4] established that
noise can support traveling waves in a chemical sube
citable medium, a photosensitive Belousov-Zhabotins
reaction. Löcheret al. [5] showed that noise can sus-
tain signal propagation in a chain of coupled diode res
nators operated in biased bistable states. Zhanget al. [6]
demonstrated that, with sufficient coupling, noise can i
duce undamped signal transmission in a numerical mod
of a chain ofone-waycoupled bistable elements. Further
more, Sendiña-Nadalet al. [7] introduced random spatial
fluctuations in an excitable medium and studied their e
fects on the propagation of autowaves, while Castelpog
and Wio [8] recently addressed the problem of local v
global coupling in reaction-diffusion characterizations o
“stochastic resonant media.”

In this Letter, we establish the robustness ofnoise en-
hanced propagation(NEP) by realizing it in a simple and
generic system, a numerical model of a chain of bistab
elements withtwo-waynearest-neighbor coupling. Like
AESR, we view NEP as an important, generic, and no
trivial extension of SR, a cooperative phenomenon invol
ing signal, noise, nonlinearity, and coupling. We sugge
scaling laws for optimizing NEP as a function of coupling
and noise. We also observe NEP in two-dimension
arrays of bistable elements. NEP may be important
biophysical and biochemical processes, especially neu
networks, and may be exploited by communication an
detection technologies.

In order to demonstrate NEP as broadly as possib
we focus on a simple model. We study a coupled cha
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of noisy overdamped bistable oscillators. Forn . 1, the
amplitudexn of thenth oscillator obeys

Ùxn ­ 2V 0fxng 1 ´sxn21 2 xnd

1 ´sxn11 2 xnd 1 Nnftg , (1)

where the prime denotes the spatial gradient, the
denotes time differentiation, the couplinǵ$ 0, and the
potential energy function characterizing each element i

V fxg ­ 2k1
x2

2
1 k2

x4

4
, (2)

wherek1, k2 . 0 to ensure its bistability, and the heigh
and width of the energy barrier areh ­ k1

2y4k2 and
w ­ 2

p
k1yk2, respectively. With the end of the chain

free, we force thefirst element sinusoidally,

Ùx1 ­ 2V 0fx1g 1 ´sx2 2 x1d 1 N1ftg 1 A sinvt , (3)

and study the propagation of this signal along the chain
Nnftg is Gaussian white noise, bandlimited in practic

by our integration time stepdt (which establishes a
nonzero correlation time) to a Nyquist frequencyfN ­
1ys2dtd. We quantify the noise by its mean square
amplitude or noise powers2 ­ 2DfN , where 2D is
the height of the one-sided noise spectrum. We stu
the case of incoherent or local noise (uncorrelated fro
oscillator to oscillator) rather than coherent or global noi
(identical at each oscillator).

We numerically integrate the system of stochastic d
ferential Eqs. (1)–(3) using the Euler-Maruyama alg
rithm [9], with a small time stepdt ­ Ty212, where the
forcing periodT ­ 2pyv. We then numerically estimate
the spectrum, or power spectral density (PSD), of a lo
time series of each oscillator. After averaging many su
PSD’s, we estimate the signal-to-noise ratio (SNR) at ea
oscillator as the ratio of the signal power to the noi
power, at the frequency of the forcing, conventionally e
pressed in decibels (dB). We estimate the noise power
performing a nonlinear fit to the PSD around—but n
© 1998 The American Physical Society
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FIG. 1. Spatiotemporal behavior of a chain of 32 overdample
bistable oscillators, sinusoidally forced at one end and subjec
to increasing incoherent noise. Parameters areh ­ 0.75, w ­
2.25, andA ­ 5.0, v ­ 0.2, and´ ­ 10.

including—the forcing frequency. We estimate the sign
power by subtracting this noise background from the tot
power at the forcing frequency. Schematically,

SNR ­ 10 log10

"
signal power
noise power

#
. (4)

However, our results are robust with respect to variatio
in this definition of SNR.

Figure 1 illustrates the system’s spatiotemporal beha
ior in the presence of increasing noise. Each strip re
resents the evolution of a chain of 32 oscillators, array
vertically and evolving horizontally, for 12 forcing peri-
ods. The gray scale codes positionsxnftg, with black de-
noting the left well and white denoting the right well. The
first forced oscillator is at the top edge of each strip. Wit
little noise, the sinusoidal signal propagates only a sho
distance down the chain. Moderate noise extends t
propagation, while excessive noise destroys it. Note ho
an intermediate noise variance ofs2 ­ 100 enables the
signal to initiate systemwide events, occasionally causi
the entire chain to hop from one well to the other. I
fact, we chose our initial operating parameters so th
in the absence of forcing, the spatiotemporal features a
large compared to the chain length and forcing perio
and large segments of the chain spontaneously flop acr
the bistable potential barrier. Such a partially correlate
medium allows noise to support, sustain, and enhance s
nal propagation. We parametrize the forcing with am
plitude A ­ 5.0 and angular frequencyv ­ 0.2, and the
bistable potential with a barrier height ofh ­ 0.75 and
barrier width of w ­ 2.25 (corresponding tok1 ø 2.37
andk2 ø 1.87). However, NEP is robust with respect to
variations in these parameters.

Figure 2 illustrates SNR versus oscillator number fo
increasing noise variance and SNR versus noise varian
for increasing oscillator number. For oscillators near th
forcing end, the SNR decreases as the noise increas
But for oscillators farther away, the SNR goes throug
d
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FIG. 2. Plots of SNR versus oscillator numbern and SNR
versus noise variances2. Intermediate noise results in maxi
mum propagation. Oscillators in the chain where noise exten
the signal exhibit stochastic resonance. Smooth curves h
been fit to the data to aid the eye. Parameters are the sam
Fig. 1 except́ ­ 4.

FIG. 3. Smoothed contour plots of SNR versus oscillat
number n versus noise variances2, for increasing coupling.
SNR contours are accurate to about61 dB. Other parameters
are the same as Fig. 1. (Here we employ a larger integrat
time step ofdt ­ Ty210.)
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a local maximum as the noise increases—the signat
of a classic stochastic resonance. Oscillators near
forcing end do not need help from the noise, as the forci
amplitude there is largesA . hd; however, oscillators far
from the forcing do need help from the noise, as th
signal there is attenuated. For a given noise power, SN
decreases with oscillator number, downstream along
chain. Defining thepropagation lengthas the number
of oscillators (or distance along the chain) for which th
SNR exceeds a certain cutoff, say, 1 dB (which is rough
the uncertainty in our numerics), we observe that t
propagation length is longest for moderate noise.

This data can be succinctly combined into a conto
plot of SNR versus noise variance versus oscillat
number. Figure 3 presents a series of such contour plo
for increasing coupling. The gray scale codes SN
with white indicating large SNR (.40 dB) and black
indicating small SNR (,1 dB). The bottom-left corners
represent the peak SNR of the noiseless first oscillat
The SNR decreases everywhere away from these corn
However, the distinct bulges in the contours, whe
regions of large SNR extend toward the free end of t
chain, are the signatures of NEP. (A 1 dB contour trac
out the propagation length as a function of noise.) A
sufficiently large coupling, the SNR extensions reach t
end of the chain, indicating that noise and coupling ha
succeeded in sustaining the signal throughout its leng
Note how both the extent and the position of these SN
extensions increase with increasing coupling.

Figure 4 summarizes the scaling of optimal noise a
maximum propagation length with coupling. Both appe
to scale as the square root of the coupling. This refle
the fact that the correlation length of spatiotempor
features for a local and linearly coupled array scales th
way [10]. As the coupling increasingly binds adjacen
oscillators together in the same well, the noise varian

FIG. 4. Scaling of optimal noises2 and maximum propaga-
tion length L with coupling ´. Uncertainty bars reflect the
averaging of many PSD’s of long noisy time series.
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must increase correspondingly in order to force su
correlated oscillators across the bistable potential barri

It is instructive to compare these results for two
way (bidirectional) bistable chains with the behavi
of one-way (unidirectional) bistable chains recent
reported by Zhanget al. [6]. For a one-way bistable
chain driven at one end, if forcing and noise coope
ate to flip the first site (from one well to the other
sufficient coupling propagates the flip to the other e
with probability one. When the forcing is just below
the threshold for the first site, the requisite noise
small enough not to interfere with the propagation
the flip. Consequently, a one-way bistable chain read

FIG. 5. Examples of (a) spatiotemporal behavior and (b) SN
response atsnx , nyd ­ sn, nd for a two-dimensional array of
32 3 32 bistable oscillators, with free boundaries, forced fro
a quarter circle of sites at the bottom-left (0, 0) corner of t
array. Parameters are the same as Fig. 1 except´ ­ 1.
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propagates flips, like a line of tumbling dominoes, an
for sufficiently large coupling, SR-initiated avalance
facilitate undamped signal transmission. A sim
lar avalanchelike propagation mechanism also charac
izes the system investigated by Löcheret al. [5]. In that
experiment, a symmetry-breaking global bias forces kin
to travel towards one boundary, after which all of the res
nators must be reset by an opposite global bias, there
preventing continuous signal transmission. By contra
the two-wayunbiasedbistable array studied here is no
susceptible to avalanche propagation and is well suited
continuousinformation transmission. In our system, NEP
results when stochastic resonances at intermediate s
(which are near threshold) extend the influence of t
input forcing. Noise, nonlinearity, and forcing (mediate
by coupling) cooperate to make this possible.

NEP is not confined tochains of bistable elements.
We have also established the effect in two-dimension
arrays. We studied a square array of overdampled
cillators, each of which was coupled to its four neare
neighbors. With free boundaries, we sinusoidally force
a circular region of oscillators and monitored the prop
gation of the resulting circular wave fronts. As in th
one-dimensional case, moderate noise extended the pro
gation length. Figure 5 summarizes the spatiotemp
ral behavior and SNR response for the two-dimension
array. Note how an intermediate noise of 75 dB corr
sponds toboth maximum propagation lengthand signifi-
cant spatiotemporal organization.

Thus, we have demonstrated thatnoise can significantly
extend the propagation of signals in arrays of two-wa
coupled bistable elements.Like AESR, NEP is an im-
portant generalization of SR. Indeed, we believe that t
phenomenon of noise-enhanced propagation transce
our intentionally simple model and may be important i
both nature and technology.
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