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ABSTRACT

This paper details an experimental nonlinear beam-
forming array fabricated in a CMOS process. The unit
cell oscillator is a nonlinear second order circuit, which
demonstrates self-sustaining oscillation. In this paper
experimental results from a test oscillator and a linearly
coupled array of oscillators are reported.  The circuit
equations of motien are shown to be equivalent to the
van der Pol oscillator, from which a weakly nonlinear
phase-amplitude model is derived. This model forms a
basis of understanding for the experimental nonlinear
beam-forming array.

1. INTRODUCTION

This research is motivated by recent interest in coupled
nonlinear oscillator systems and nonlinear beam
forming armrays [1])[2]. Nonlinear oscillators are
constructed and coupled using adjustable wide range
amplifiers. By purposefully employing the weak
nonlinear properties of the oscillator, a phase-amplitude
model is constructed, where the phase and amplitude
dynamics are effectively separable. In this mode the
CMOS array is a prime candidate for studying coupled
nonlinear oscillator arrays. To this end an analytical
model of the array is described and experimental results
from a beam-forming array are presented.

2. NONLINEAR SECCOND-ORDER SECTION

The oscillator is based on a second order circuit {second
order section [3]), shown schematically in figure 1.
Several varicties of seif-sustaining oscillation can be
achieved with this ¢ircuit. This study focuses on weak
nonlinear oscillation and arrays of coupled weak
nonlinear oscillators.  Oscillation is achieved by
purposefully employing the nonlinear properties of the
feedback amplifier (labeled g in figure 1) via an
adjustable transconductance range. The amplifier is
similar to a wide linear range amplifier (WLA) but
allows the width of the linear transconductance region
to be adjusted, as well as the overall bias current.
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Figure 1. Block diagram of the nonlinear
oscillator. The oscillator is a second order system
and is constructed from linear and- nonlinear
amplifiers. The circuit demonstrates weak nonlinear
oscillation by employing the inherent nonlinear
qualitiecs of the feedback amplifier g.  The
amplifiers | and , operate linearly. :

The amplifier design is based on an above-threshold
differential pair, whose. currents are re-normalized by
diodes and a below-threshold differential pair [4].
Equation (1) is used to describe the input-output
characteristics of the adjustable WLA. The amplifier
linear range and bias current are accessible parameters
set by ¥, and. ¥, respectively. The parameters , ,
¥,, and J, are process dependent parameters, with the
values: =132, =2034, ¥, =062, I,=147 10"

and C=42 10 "%

I, =Blanh{A(Y, V) (1.0)

A= (.1
Vi Ve

B=le¢" (1.2)

The equations of motion for the circuit can be derived
by considering the transconductance of each amplifier,
using equations {1.0)-(1.2), and Kirchoff’s current law.
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Figure 2. Scanning circuitry block diagram. In
the style of Mead et al a row column selection
scheme that incorporates horizontal and vertical
shift registers and differential current mode output
is used [3]. An external operational amplifier is
used to convert the scanned current into a
measurable voltage.

3. EXPERIMENTAL SYSTEM

Test results are obtaingd from 8 CMOS chip fabricated
using the TSMC 0.35am process. The chip contains
the coupled oscillator arrays, a test amplifier, and an
uncoupled test oscillator. The test amplifier is
primarily used to determine the process dependent
parameters, so that the physical system can be
accurately modeled. A method for time-multiplexing
the state variables of each oscillator in the array
is implemented by mirroring the output curmrent of the
linear amplifiers with shift registers on the periphery of
the array and pass devices for each mirrored current.
Given the required scanning speeds, a differential
cwrrent scanning method is used, where currents are
switched between lines at identical voltages, thus
eliminating the capacitive loading effects of the
scanning lines [3][5]. A block diagram of the scanning
circuitry is shown in figure 2. The experimental setup

consists of a personal computer (PC), a data acquisition -

card (DAQ), and a microcontroller. The microcontroller
is used to interpret commands from the PC, control the
scanner clock and data lines for row-column selection,
and signal the PC when the scanned output current is
ready for measurement. Communication with the
microcontroller (Microchip PIC16C84) is handled via
/O ports on the DAC card [National Instruments
6052E). Commands are received as interrupts on a
digital /O port. The commands are then interpreted as
modes, For example, in one mode the microcontroller
scans the state of the entire array. Alternatively, there
is a mode for scanning rows in the array, and a mode
for selecting individual elements. When state variables
are scanned from the array the data acquisition card
receives a trigger signal from the microcontroller at the
start of each frame and each time a new value is
available for measurement.

0.z

Figure 3, Weak-nonlinear (black curve) and
strong-nenlinear {grey curve) oscillatory behavior.
The variables x and y are measured from the test
oscillator using x=¥%, ¥ and y=F, ¥, For
the weak-nonlinear curve: V¥, =091. For the
strong-nonlinear curve ¥, =07. For both curves,

v, =0.65, ¥, =12.
4. WEAK NONLINEAR OSCILLATOR

To better illustrate the behavior of the oscillator it is
convenient to express the circuit equations in terms of
the van der Pol oscillator, equation (3.0). This is
achieved by making a change of variables, so that
x=V, ¥, and y=V, ¥,, and by expanding equation
(2.0} about x to third order.
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In equation (3.0) the parameters , and  determine
the linearity, the amplitude and frequency of the
oscillation respectively. Each of these parameters are
fixed by the four parameters 4, B, A, and B, Each
of these parameters are in tern set by the accessible
voltage parameters V, , ¥V, , ¥, and ¥ via equations

(1.1y and (1.2).
5. AMPLITUDE AND PHASE MODEL

By considering the weak nonlinear parameter region,
where 0< <1, one can take advantage of a separation
of time scales and express the oscillator as two
independent variables.
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Figure 4. Frequency response of the test oscillator
versus bias parameters V, and Vo {black curve),

the parameters are equal through the sweep.
Equation (3.3) is also plotted (grey curve). The
oscillator has an operational frequency range that
spans several orders of magnitude.

The new variables describe the time evolution of a
slowly evolving amplitude variabler and a phase
variable’ {6]. The phase-amplitude model is
represented by equations (4.0) and (4.1). The solution
to equation (4.0} is straight forward. Since this report
is concemed with post-transient stable periodic
behavior, it is convenient to consider the long time-

limit stable amplitudé, where . -2

_ 4 (4.0)
= @1

For reference, the phase-amplitude model can be
represented by a single complex amplitude equation,
equation (5).

é:( + i )ﬂ Tlara (50)
a=re' G.D)

This deseription allows a clear understanding of the
system dynamics when accessible parameters change.
According to equations (3.1)-(3.3) and (1.1)-(1.2) the
parameter V, sets the circuit lincar operating region,

The parameters V, ,V, and v, set the frequency of
operation.  The parameter V, is used to set the
nonlinearity parameter  and the amplitude parameter

Figure 4 illustrates the frequency response of the
oscillator as a function of V, .
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Figure 5. Amplitude response of the oscillator
versus the parameter v, (black curve), which also

-affects the' nonlinearity of the oscillator.  The
theoretical long-time stability limit for r is also
plotted using equation (3.2) (grey curve).

The oscillator natural frequency has a distinctive
exponential dependence on the bias parameter and spans
several orders of -magnitude. Conveniently the
frequency of oscillation is independent of the nonlinear
feedback parameters. Figure S illustrates the amplitude
of oscillation as a function Uf_V,q-

This implementaticn of a phase-amplitude model is a
good candidate for studying coupled nonlinear
oscillator atrays that function over a wide range of
frequencies. In particular, there is recent interest in
nonlinear beam-forming arrays. Progress has been
made in the construction of nonlinear “shifter-less”
beam forming antenna arrays that operate in the
gigahertz frequency range. Also, a strong theoretical
understanding of similar nonlinear-coupled arrays is
forming {1][2]. Such theoretical insight provides a
foundation for the precise manipulation of nonlinear
arrays. For example, transmit and receive antennas
often require a strong main beam and low side lobes in
the radiation pattern. This can be achieved by
adjusting the stable amplitude of each oscillator in a
prescribed way. Nonlinear oscillators that are used to
fill these roles will do so successfully if the natural
frequency and amplitude can be adjusted independently
via accessible parameters. The second-order circuit
presented here is one example oscillator.

6. BEAM FORMING ARRAY

Local linear bidirectional coupling is achieved with two
additional amplifiers per oscillator, so that the coupling
current is proportional to the difference in nearest
neighbor Vv, variables. The coupled amay version of
equation (2.0) is given in equation (6.0), along with the
coupled van der Pol representation in equation (7.0).
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Figure 6. Experimental beam-forming. The beam
pattern is obtained by coupling a linear chain of
nonlinear oscillators {vertical axis). The variables
x, are plotted as a function of time (bottom axis}

and colored using a normalized scale with black
and white corresponding to the maximum and
minimum amplitude values respectively. Phase
shifts between elements in the armay occur as a
result of frequency detuning each element in the
array. Even though each uncoupled oscillator has a
unique natural frequency, the oscillators
synchronize to a common intermediate frequency
due to the coupling and nonlinear qualities of the
system. The phase gradient depends on the
amount of frequency detuning. The experimental
parameters are as follows: V, =12, \/,v=0_89,

V, ua =055, V, 4., =0.54, V, =0.545.
OV, =1,(Vs¥) )+ (Vi Vg )+ T W) + LV, ) (6-0)

- 25 . 2
¥ =2 j(l *) )xi %y

+ fk( S TR i 2( jxl+xi))

‘ (1.0)
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The amay oscillates synchronously with local linear
coupling. By frequency detuning each oscillator in the
array a stable beam pattern is formed at an intermediate
frequency and constant phase difference between
oscillators [1]{2]). An example time series from the
experimental amray is shown in figure 6. In the
experimental implementation, frequency detuning is
achieved by connecting the frequency bias parameters
V, to a resistive voltage divider. By setting the
endpoints of the voltage divider a natural frequency
gradient is established in the array. For small
differences in voltages the gradient is linear.
Alternatively the frequency gradient can be established
via the parameter V,. For these results a low
operational frequency, on the order of ~10 Hz, is
studied due to the low frame rate limitations of the
data-acquisition system. From the circuit equations we
develop a numerical model of the coupled nonlinear
array.
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Figure 7. Model beam-forming, The beam pattern
is obtained by simulating the coupled circuit
equations using a 1st order Euler method. The
system dependent parameters are measured directly
from the cxperimental array. The numerical
parameters are as follows: Vv, =1.2, v, =089,

Vy i =0.550, V, 4o =0.53, V, =0.546.

The numerical model is used as a stopping ground
between the analytical predictions and the actual
behavior of the array. In its simplest form the
numerical model treats the circuit as an ideal system
based on equations (2.0) and (2.1). Figure 7 illustrates
an example time series from the numerical model. The
parameters for the numerical simulation are taken from
the experimental parameters.

12. CONCLUSION

These experiments demonstrate the viability of
implementing a coupled array of nonlinear oscillators in
a practical beam steering application. Issues such as
fabrication mismatch between oscillators still present a
considerable challenge to creating well-behaved arrays.
Future designs will seek to minimize these effects by
incorporating more advanced circuit level designs.
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